forked from pyomeca/bioptim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_objectives.py
182 lines (151 loc) · 5.53 KB
/
custom_objectives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
This example is a trivial box that tries to superimpose one of its corner to a marker at the beginning of the movement
and superimpose the same corner to a different marker at the end.
It is designed to show how one can define its own custom objective function if the provided ones are not
sufficient.
More specifically this example reproduces the behavior of the Mayer.SUPERIMPOSE_MARKERS objective function.
"""
import platform
from casadi import MX
from bioptim import (
BiorbdModel,
Node,
OptimalControlProgram,
Dynamics,
DynamicsFcn,
ObjectiveFcn,
ObjectiveList,
BoundsList,
OdeSolver,
OdeSolverBase,
PenaltyController,
Solver,
PhaseDynamics,
)
def custom_func_track_markers(controller: PenaltyController, first_marker: str, second_marker: str, method: int) -> MX:
"""
The used-defined objective function (This particular one mimics the ObjectiveFcn.SUPERIMPOSE_MARKERS)
Except for the last two
Parameters
----------
controller: PenaltyController
The penalty node elements
first_marker: str
The index of the first marker in the bioMod
second_marker: str
The index of the second marker in the bioMod
method: int
Two identical ways are shown to help the new user to navigate the biorbd API
Returns
-------
The cost that should be minimize in the MX format. If the cost is quadratic, do not put
the square here, but use the quadratic=True parameter instead
"""
# Get the index of the markers from their name
marker_0_idx = controller.model.marker_index(first_marker)
marker_1_idx = controller.model.marker_index(second_marker)
if method == 0:
# Convert the function to the required format and then subtract
markers = controller.mx_to_cx("markers", controller.model.markers, controller.states["q"])
markers_diff = markers[:, marker_1_idx] - markers[:, marker_0_idx]
else:
# Do the calculation in biorbd API and then convert to the required format
markers = controller.model.markers(controller.states["q"].mx)
markers_diff = markers[marker_1_idx] - markers[marker_0_idx]
markers_diff = controller.mx_to_cx("markers", markers_diff, controller.states["q"])
return markers_diff
def prepare_ocp(
biorbd_model_path,
ode_solver: OdeSolverBase = OdeSolver.RK4(),
phase_dynamics: PhaseDynamics = PhaseDynamics.SHARED_DURING_THE_PHASE,
expand_dynamics: bool = True,
) -> OptimalControlProgram:
"""
Prepare the program
Parameters
----------
biorbd_model_path: str
The path of the biorbd model
ode_solver: OdeSolverBase
The type of ode solver used
phase_dynamics: PhaseDynamics
If the dynamics equation within a phase is unique or changes at each node.
PhaseDynamics.SHARED_DURING_THE_PHASE is much faster, but lacks the capability to have changing dynamics within
a phase. A good example of when PhaseDynamics.ONE_PER_NODE should be used is when different external forces
are applied at each node
expand_dynamics: bool
If the dynamics function should be expanded. Please note, this will solve the problem faster, but will slow down
the declaration of the OCP, so it is a trade-off. Also depending on the solver, it may or may not work
(for instance IRK is not compatible with expanded dynamics)
Returns
-------
The ocp ready to be solved
"""
# --- Options --- #
# BioModel path
bio_model = BiorbdModel(biorbd_model_path)
# Problem parameters
n_shooting = 30
final_time = 2
tau_min, tau_max, tau_init = -100, 100, 0
# Add objective functions
objective_functions = ObjectiveList()
objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau")
objective_functions.add(
custom_func_track_markers,
custom_type=ObjectiveFcn.Mayer,
node=Node.START,
quadratic=True,
first_marker="m0",
second_marker="m1",
weight=1000,
method=0,
)
objective_functions.add(
custom_func_track_markers,
custom_type=ObjectiveFcn.Mayer,
node=Node.END,
quadratic=True,
first_marker="m0",
second_marker="m2",
weight=1000,
method=1,
)
# Dynamics
dynamics = Dynamics(DynamicsFcn.TORQUE_DRIVEN, expand_dynamics=expand_dynamics, phase_dynamics=phase_dynamics)
# Path constraint
x_bounds = BoundsList()
x_bounds.add("q", bio_model.bounds_from_ranges("q"))
x_bounds.add("qdot", bio_model.bounds_from_ranges("qdot"))
x_bounds["q"][1:, [0, -1]] = 0
x_bounds["q"][2, -1] = 1.57
x_bounds["qdot"][:, [0, -1]] = 0
# Define control path constraint
tau_min, tau_max = -100, 100
u_bounds = BoundsList()
u_bounds.add("tau", min_bound=[tau_min] * bio_model.nb_tau, max_bound=[tau_max] * bio_model.nb_tau)
# ------------- #
return OptimalControlProgram(
bio_model,
dynamics,
n_shooting,
final_time,
x_bounds=x_bounds,
u_bounds=u_bounds,
objective_functions=objective_functions,
ode_solver=ode_solver,
)
def main():
"""
Solve and animate the solution
"""
model_path = "models/cube.bioMod"
ocp = prepare_ocp(biorbd_model_path=model_path)
# Custom plots
ocp.add_plot_penalty()
# --- Solve the program --- #
sol = ocp.solve(Solver.IPOPT(show_online_optim=platform.system() == "Linux"))
# --- Show results --- #
sol.animate()
if __name__ == "__main__":
main()