forked from pyomeca/bioptim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pendulum_min_time_Mayer.py
141 lines (119 loc) · 4.34 KB
/
pendulum_min_time_Mayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
This is a clone of the example/getting_started/pendulum.py where a pendulum must be balance. The difference is that
the time to perform the task is now free and minimized by the solver. This example shows how to define such an optimal
control program with a Mayer criteria (value of final_time)
The difference between Mayer and Lagrange minimization time is that the former can define bounds to
the values, while the latter is the most common way to define optimal time
"""
import platform
import numpy as np
from bioptim import (
BiorbdModel,
OptimalControlProgram,
DynamicsList,
DynamicsFcn,
ObjectiveList,
ObjectiveFcn,
BoundsList,
OdeSolver,
OdeSolverBase,
CostType,
Solver,
ControlType,
PhaseDynamics,
SolutionMerge,
)
def prepare_ocp(
biorbd_model_path: str,
final_time: float,
n_shooting: int,
ode_solver: OdeSolverBase = OdeSolver.RK4(),
weight: float = 1,
min_time=0,
max_time=np.inf,
phase_dynamics: PhaseDynamics = PhaseDynamics.SHARED_DURING_THE_PHASE,
expand_dynamics: bool = True,
control_type: ControlType = ControlType.CONSTANT,
) -> OptimalControlProgram:
"""
Prepare the optimal control program
Parameters
----------
biorbd_model_path: str
The path to the bioMod
final_time: float
The initial guess for the final time
n_shooting: int
The number of shooting points
ode_solver: OdeSolverBase
The ode solver to use
weight: float
The weighting of the minimize time objective function
min_time: float
The minimum time allowed for the final node
max_time: float
The maximum time allowed for the final node
phase_dynamics: PhaseDynamics
If the dynamics equation within a phase is unique or changes at each node.
PhaseDynamics.SHARED_DURING_THE_PHASE is much faster, but lacks the capability to have changing dynamics within
a phase. A good example of when PhaseDynamics.ONE_PER_NODE should be used is when different external forces
are applied at each node
expand_dynamics: bool
If the dynamics function should be expanded. Please note, this will solve the problem faster, but will slow down
the declaration of the OCP, so it is a trade-off. Also depending on the solver, it may or may not work
(for instance IRK is not compatible with expanded dynamics)
Returns
-------
The OptimalControlProgram ready to be solved
"""
# --- Options --- #
bio_model = BiorbdModel(biorbd_model_path)
tau_min, tau_max = -100, 100
n_tau = bio_model.nb_tau
# Add objective functions
objective_functions = ObjectiveList()
# A weight of -1 will maximize time
objective_functions.add(ObjectiveFcn.Mayer.MINIMIZE_TIME, weight=weight, min_bound=min_time, max_bound=max_time)
# Dynamics
dynamics = DynamicsList()
dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand_dynamics=expand_dynamics, phase_dynamics=phase_dynamics)
# Path constraint
x_bounds = BoundsList()
x_bounds["q"] = bio_model.bounds_from_ranges("q")
x_bounds["q"][:, [0, -1]] = 0
x_bounds["q"][-1, -1] = 3.14
x_bounds["qdot"] = bio_model.bounds_from_ranges("qdot")
x_bounds["qdot"][:, [0, -1]] = 0
# Define control path constraint
u_bounds = BoundsList()
u_bounds["tau"] = [tau_min] * n_tau, [tau_max] * n_tau
u_bounds["tau"][-1, :] = 0
# ------------- #
return OptimalControlProgram(
bio_model,
dynamics,
n_shooting,
final_time,
x_bounds=x_bounds,
u_bounds=u_bounds,
objective_functions=objective_functions,
ode_solver=ode_solver,
control_type=control_type,
)
def main():
"""
Prepare, solve and animate a time minimizer ocp using a Mayer criteria
"""
ocp = prepare_ocp(
biorbd_model_path="models/pendulum.bioMod", final_time=2, n_shooting=50, ode_solver=OdeSolver.RK4()
)
# Let's show the objectives
ocp.add_plot_penalty(CostType.OBJECTIVES)
# --- Solve the program --- #
sol = ocp.solve(Solver.IPOPT(show_online_optim=platform.system() == "Linux"))
# --- Show results --- #
times = float(sol.decision_time(to_merge=SolutionMerge.NODES)[-1, 0])
print(f"The optimized phase time is: {times}, good job Mayer!")
sol.animate()
if __name__ == "__main__":
main()