forked from pyomeca/bioptim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
track_marker_on_segment.py
154 lines (132 loc) · 4.73 KB
/
track_marker_on_segment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
This example is a trivial example where a stick must keep a corner of a box in line for the whole duration of the
movement. The initial and final position of the box are dictated, the rest is fully optimized. It is designed
to show how one can use the tracking function to track a marker with a body segment
"""
import platform
from bioptim import (
BiorbdModel,
Node,
Axis,
OptimalControlProgram,
DynamicsList,
DynamicsFcn,
ObjectiveList,
ObjectiveFcn,
ConstraintList,
ConstraintFcn,
BoundsList,
InitialGuessList,
OdeSolver,
OdeSolverBase,
Solver,
PhaseDynamics,
)
def prepare_ocp(
biorbd_model_path: str,
final_time: float,
n_shooting: int,
initialize_near_solution: bool,
ode_solver: OdeSolverBase = OdeSolver.RK4(),
constr: bool = True,
use_sx: bool = False,
phase_dynamics: PhaseDynamics = PhaseDynamics.SHARED_DURING_THE_PHASE,
expand_dynamics: bool = True,
) -> OptimalControlProgram:
"""
Prepare the ocp
Parameters
----------
biorbd_model_path: str
The path to the bioMod file
final_time: float
The time at the final node
n_shooting: int
The number of shooting points
initialize_near_solution: bool
If the initial guess should be almost the solution (this is merely to reduce the time of the tests)
ode_solver: OdeSolverBase
The ode solver to use
constr: bool
If the constraint should be applied (this is merely to reduce the time of the tests)
use_sx: bool
If SX CasADi variables should be used
phase_dynamics: PhaseDynamics
If the dynamics equation within a phase is unique or changes at each node.
PhaseDynamics.SHARED_DURING_THE_PHASE is much faster, but lacks the capability to have changing dynamics within
a phase. A good example of when PhaseDynamics.ONE_PER_NODE should be used is when different external forces
are applied at each node
expand_dynamics: bool
If the dynamics function should be expanded. Please note, this will solve the problem faster, but will slow down
the declaration of the OCP, so it is a trade-off. Also depending on the solver, it may or may not work
(for instance IRK is not compatible with expanded dynamics)
Returns
-------
The OptimalControlProgram ready to be solved
"""
bio_model = BiorbdModel(biorbd_model_path)
# Add objective functions
objective_functions = ObjectiveList()
objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=100, multi_thread=False)
# Dynamics
dynamics = DynamicsList()
dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand_dynamics=expand_dynamics, phase_dynamics=phase_dynamics)
# Constraints
if constr:
constraints = ConstraintList()
constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.START, first_marker="m0", second_marker="m4")
constraints.add(ConstraintFcn.SUPERIMPOSE_MARKERS, node=Node.END, first_marker="m0", second_marker="m5")
constraints.add(
ConstraintFcn.TRACK_MARKER_WITH_SEGMENT_AXIS, node=Node.ALL, marker="m1", segment="seg_rt", axis=Axis.X
)
else:
constraints = ConstraintList()
# Path constraint
x_bounds = BoundsList()
x_bounds["q"] = bio_model.bounds_from_ranges("q")
x_bounds["q"][1:3, [0, -1]] = 0
x_bounds["q"][2, -1] = 1.57
x_bounds["qdot"] = bio_model.bounds_from_ranges("qdot")
x_bounds["qdot"][:, [0, -1]] = 0
# Initial guess
x_init = InitialGuessList()
x_init["q"] = [0] * bio_model.nb_q
x_init["qdot"] = [0] * bio_model.nb_qdot
if initialize_near_solution:
x_init["q"].init[0:2, :] = 1.5
x_init["qdot"].init[0:2, :] = 0.7
x_init["qdot"].init[2:, :] = 0.6
# Define control path constraint
tau_min, tau_max = -100, 100
u_bounds = BoundsList()
u_bounds["tau"] = [tau_min] * bio_model.nb_tau, [tau_max] * bio_model.nb_tau
# ------------- #
return OptimalControlProgram(
bio_model,
dynamics,
n_shooting,
final_time,
x_bounds=x_bounds,
u_bounds=u_bounds,
x_init=x_init,
objective_functions=objective_functions,
constraints=constraints,
ode_solver=ode_solver,
use_sx=use_sx,
)
def main():
"""
Prepares, solves and animate the program
"""
ocp = prepare_ocp(
biorbd_model_path="models/cube_and_line.bioMod",
n_shooting=30,
final_time=2,
initialize_near_solution=True,
)
# --- Solve the program --- #
sol = ocp.solve(Solver.IPOPT(show_online_optim=platform.system() == "Linux"))
# --- Show results --- #
sol.animate()
if __name__ == "__main__":
main()