forked from pyomeca/bioptim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
track_vector_orientation.py
129 lines (108 loc) · 3.55 KB
/
track_vector_orientation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
This example is a trivial example where a stick must keep its axis aligned with the one
side of a box during the whole duration of the movement.
"""
import platform
from bioptim import (
BiorbdModel,
Node,
OptimalControlProgram,
DynamicsList,
DynamicsFcn,
ObjectiveList,
ObjectiveFcn,
BoundsList,
InitialGuessList,
OdeSolver,
OdeSolverBase,
Solver,
PhaseDynamics,
)
def prepare_ocp(
biorbd_model_path: str,
final_time: float,
n_shooting: int,
ode_solver: OdeSolverBase = OdeSolver.RK4(),
phase_dynamics: PhaseDynamics = PhaseDynamics.SHARED_DURING_THE_PHASE,
expand_dynamics: bool = True,
) -> OptimalControlProgram:
"""
Prepare the ocp
Parameters
----------
biorbd_model_path: str
The path to the model
final_time: float
The time of the final node
n_shooting: int
The number of shooting points
ode_solver:
The ode solver to use
phase_dynamics: PhaseDynamics
If the dynamics equation within a phase is unique or changes at each node.
PhaseDynamics.SHARED_DURING_THE_PHASE is much faster, but lacks the capability to have changing dynamics within
a phase. A good example of when PhaseDynamics.ONE_PER_NODE should be used is when different external forces
are applied at each node
expand_dynamics: bool
If the dynamics function should be expanded. Please note, this will solve the problem faster, but will slow down
the declaration of the OCP, so it is a trade-off. Also depending on the solver, it may or may not work
(for instance IRK is not compatible with expanded dynamics)
Returns
-------
The OptimalControlProgram ready to be solved
"""
bio_model = BiorbdModel(biorbd_model_path)
# Add objective functions
objective_functions = ObjectiveList()
objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL, key="tau", weight=1)
objective_functions.add(
ObjectiveFcn.Mayer.TRACK_VECTOR_ORIENTATIONS_FROM_MARKERS,
node=Node.ALL,
weight=100,
vector_0_marker_0="m0",
vector_0_marker_1="m3",
vector_1_marker_0="origin",
vector_1_marker_1="m6",
)
# Dynamics
dynamics = DynamicsList()
dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand_dynamics=expand_dynamics, phase_dynamics=phase_dynamics)
# Path constraint
x_bounds = BoundsList()
x_bounds["q"] = bio_model.bounds_from_ranges("q")
x_bounds["q"][2, [0, -1]] = [-1.57, 1.57]
x_bounds["qdot"] = bio_model.bounds_from_ranges("qdot")
# Define control path constraint
tau_min, tau_max, tau_init = -100, 100, 2
u_bounds = BoundsList()
u_bounds["tau"] = [tau_min] * bio_model.nb_tau, [tau_max] * bio_model.nb_tau
u_init = InitialGuessList()
u_init["tau"] = [tau_init] * bio_model.nb_tau
# ------------- #
return OptimalControlProgram(
bio_model,
dynamics,
n_shooting,
final_time,
x_bounds=x_bounds,
u_bounds=u_bounds,
u_init=u_init,
objective_functions=objective_functions,
ode_solver=ode_solver,
)
def main():
"""
Prepares, solves and animates the program
"""
ocp = prepare_ocp(
biorbd_model_path="models/cube_and_line.bioMod",
n_shooting=30,
final_time=1,
)
ocp.add_plot_penalty()
# --- Solve the program --- #
sol = ocp.solve(Solver.IPOPT(show_online_optim=platform.system() == "Linux"))
# --- Show results --- #
sol.animate()
if __name__ == "__main__":
main()