-
Notifications
You must be signed in to change notification settings - Fork 259
/
Copy pathnotebook_randlookups.py
101 lines (83 loc) · 2.88 KB
/
notebook_randlookups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# ---
# jupyter:
# jupytext:
# cell_metadata_filter: -all
# formats: py:percent,ipynb
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.16.4
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %%
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Random exploration with credential lookup exploitation (notebook)
This notebooks can be run directly from VSCode, to generate a
traditional Jupyter Notebook to open in your browser
you can run the VSCode command `Export Currenty Python File As Jupyter Notebook`.
"""
# pylint: disable=invalid-name
# %%
import os
import gymnasium as gym
import logging
import sys
from cyberbattle._env.cyberbattle_env import AttackerGoal
from cyberbattle.agents.baseline.agent_randomcredlookup import CredentialCacheExploiter
import cyberbattle.agents.baseline.learner as learner
import cyberbattle.agents.baseline.plotting as p
import cyberbattle.agents.baseline.agent_wrapper as w
from cyberbattle.agents.baseline.agent_wrapper import Verbosity
from cyberbattle._env.cyberbattle_env import CyberBattleEnv
# %%
# %matplotlib inline
# %%
logging.basicConfig(stream=sys.stdout, level=logging.ERROR, format="%(levelname)s: %(message)s")
# %%
cyberbattlechain_10 = gym.make("CyberBattleChain-v0", size=10, attacker_goal=AttackerGoal(own_atleast_percent=1.0)).unwrapped
assert isinstance(cyberbattlechain_10, CyberBattleEnv)
# %%
ep = w.EnvironmentBounds.of_identifiers(maximum_total_credentials=12, maximum_node_count=12, identifiers=cyberbattlechain_10.identifiers)
# %% {"tags": ["parameters"]}
iteration_count = 9000
training_episode_count = 50
eval_episode_count = 5
plots_dir = 'plots'
# %%
os.makedirs(plots_dir, exist_ok=True)
credexplot = learner.epsilon_greedy_search(
cyberbattlechain_10,
learner=CredentialCacheExploiter(),
environment_properties=ep,
episode_count=training_episode_count,
iteration_count=iteration_count,
epsilon=0.90,
render=False,
epsilon_multdecay=0.75, # 0.999,
epsilon_minimum=0.01,
verbosity=Verbosity.Quiet,
title="Random+CredLookup",
)
# %%
randomlearning_results = learner.epsilon_greedy_search(
cyberbattlechain_10,
environment_properties=ep,
learner=CredentialCacheExploiter(),
episode_count=eval_episode_count,
iteration_count=iteration_count,
epsilon=1.0, # purely random
render=False,
verbosity=Verbosity.Quiet,
title="Random search",
)
# %%
p.plot_episodes_length([credexplot])
p.plot_all_episodes(credexplot)
all_runs = [credexplot, randomlearning_results]
p.plot_averaged_cummulative_rewards(title=f"Benchmark -- max_nodes={ep.maximum_node_count}, episodes={eval_episode_count},\n", all_runs=all_runs,
save_at=os.path.join(plots_dir, "randlookups-cumreward.png"))