From 1ab8c9bedc62a0825e187c836f0e76541f3cfd8a Mon Sep 17 00:00:00 2001 From: Logan Adams <114770087+loadams@users.noreply.github.com> Date: Fri, 17 Jan 2025 17:20:46 -0800 Subject: [PATCH] Update `torch.norm` to `torch.linalg.norm` and `torch.linalg.vector_norm` (#6931) - [x] Update PR since `torch.norm` and `torch.linalg.norm` have [different function signatures](https://pytorch.org/docs/stable/generated/torch.linalg.norm.html#torch.linalg.norm). - [x] Check if there are any numeric differences between the functions. - [x] Determine why there appear to be performance differences from others [here](https://github.com/pytorch/pytorch/issues/136360). - [x] Update to `torch.linalg.vectornorm` Follow up PR handles these in the comm folder: #6960 --- deepspeed/runtime/comm/compressed.py | 2 +- deepspeed/runtime/comm/hccl.py | 2 +- deepspeed/runtime/fp16/onebit/lamb.py | 2 +- deepspeed/runtime/zero/stage3.py | 2 +- deepspeed/runtime/zero/stage_1_and_2.py | 5 +++-- 5 files changed, 7 insertions(+), 6 deletions(-) diff --git a/deepspeed/runtime/comm/compressed.py b/deepspeed/runtime/comm/compressed.py index 7f8c7395451d..2c5482eb1ad7 100644 --- a/deepspeed/runtime/comm/compressed.py +++ b/deepspeed/runtime/comm/compressed.py @@ -96,7 +96,7 @@ def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_erro compensated_server_m.add_(server_error) - server_scale = torch.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel()) + server_scale = torch.linalg.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel()) server_error.set_(compensated_server_m - server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)) diff --git a/deepspeed/runtime/comm/hccl.py b/deepspeed/runtime/comm/hccl.py index 09fb11a731b8..b8639c7da4c9 100644 --- a/deepspeed/runtime/comm/hccl.py +++ b/deepspeed/runtime/comm/hccl.py @@ -83,7 +83,7 @@ def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_erro compensated_server_m.add_(server_error) - server_scale = torch.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel()) + server_scale = torch.linalg.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel()) server_error.set_(compensated_server_m - server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)) diff --git a/deepspeed/runtime/fp16/onebit/lamb.py b/deepspeed/runtime/fp16/onebit/lamb.py index 89b6f40a308c..9e7bae816ecd 100644 --- a/deepspeed/runtime/fp16/onebit/lamb.py +++ b/deepspeed/runtime/fp16/onebit/lamb.py @@ -177,7 +177,7 @@ def step(self, closure=None, grads=None): # This is used to reduce compression error during compression stage. momentum_scales = [] for group in self.param_groups: - momentum_scales.append([(torch.linalg.norm(self.state[p]['exp_avg']) / + momentum_scales.append([(torch.linalg.vector_norm(self.state[p]['exp_avg']) / np.sqrt(torch.numel(self.state[p]['exp_avg']))).item() for p in group['params']]) united_scale = sum([sum(x) for x in momentum_scales]) / sum([len(x) for x in momentum_scales]) diff --git a/deepspeed/runtime/zero/stage3.py b/deepspeed/runtime/zero/stage3.py index 28f91cb9b3ab..9c06567ed100 100644 --- a/deepspeed/runtime/zero/stage3.py +++ b/deepspeed/runtime/zero/stage3.py @@ -2101,7 +2101,7 @@ def step(self, closure=None): return norm_groups = self._get_norm_groups() - scaled_global_grad_norm = torch.linalg.norm(torch.stack(norm_groups)) + scaled_global_grad_norm = torch.linalg.vector_norm(torch.stack(norm_groups)) # Stash unscaled gradient norm self._global_grad_norm = scaled_global_grad_norm / self.loss_scale diff --git a/deepspeed/runtime/zero/stage_1_and_2.py b/deepspeed/runtime/zero/stage_1_and_2.py index 0508766f8896..ed3425167944 100755 --- a/deepspeed/runtime/zero/stage_1_and_2.py +++ b/deepspeed/runtime/zero/stage_1_and_2.py @@ -1691,7 +1691,8 @@ def get_grad_norm_direct(self, gradients, params, norm_type=2): continue if is_model_parallel_parameter(p) or (self.model_parallel_rank == 0): all_norms.append( - torch.norm(g.data.double().detach(), norm_type).to(get_accelerator().current_device_name())) + torch.linalg.vector_norm(g.data.double().detach(), + ord=norm_type).to(get_accelerator().current_device_name())) if len(all_norms) > 0: total_norm = torch.stack(all_norms).square().sum().float() else: @@ -1795,7 +1796,7 @@ def scaled_global_norm(self, norm_type=2): self._average_expert_grad_norms(norm_groups) # calculating L2 norm - return torch.norm(torch.stack(norm_groups), p=norm_type) + return torch.linalg.vector_norm(torch.stack(norm_groups), ord=norm_type) def get_bit16_param_group(self, group_no): bit16_partitions = self.parallel_partitioned_bit16_groups[group_no]