forked from udacity/aind2-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_answers.py
81 lines (65 loc) · 2.48 KB
/
my_answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
import keras
# TODO: fill out the function below that transforms the input series
# and window-size into a set of input/output pairs for use with our RNN model
def window_transform_series(series, window_size):
# containers for input/output pairs
X = []
y = []
index = 0
while index + window_size < len(series):
X.append(series[index:index+window_size])
y.append(series[index+window_size])
index += 1
# reshape each
X = np.asarray(X)
X.shape = (np.shape(X)[0:2])
y = np.asarray(y)
y.shape = (len(y),1)
return X,y
# TODO: build an RNN to perform regression on our time series input/output data
def build_part1_RNN(window_size):
model = Sequential()
model.add(LSTM(5, input_shape=(window_size, 1)))
model.add(Dense(1))
model.summary()
return model
### TODO: return the text input with only ascii lowercase and the punctuation given below included.
def cleaned_text(text):
# punctuation = ['!', ',', '.', ':', ';', '?']
import re
import string
LETTERS = string.ascii_letters
PUNCTUATION = ',.\'!?;:'
text = text.replace("'", "?")
# find all unique characters in the text
uniques = ''.join(set(text))
# remove as many non-english characters and character sequences as you can
for char in uniques:
if char not in LETTERS and char not in PUNCTUATION:
text = text.replace(char, ' ')
return text
### TODO: fill out the function below that transforms the input text and window-size into a set of input/output pairs for use with our RNN model
def window_transform_text(text, window_size, step_size):
# containers for input/output pairs
inputs = []
outputs = []
index = 0
while index + window_size < len(text):
inputs.append(text[index:index+window_size])
outputs.append(text[index+window_size])
index += step_size
return inputs,outputs
# TODO build the required RNN model:
# a single LSTM hidden layer with softmax activation, categorical_crossentropy loss
def build_part2_RNN(window_size, num_chars):
model = Sequential()
# Layer 1, the LSTM module with 200 hidden units
model.add(LSTM(200, input_shape=(window_size, num_chars)))
# Layer 2, a fully-connected layer with softmax activation function
model.add(Dense(num_chars, activation='softmax'))
model.summary()
return model