-
Notifications
You must be signed in to change notification settings - Fork 1
/
MainSimulation.m
401 lines (306 loc) · 13.7 KB
/
MainSimulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
% Mobius/combinatorics inversion simulation
%
% mikael.mieskolainen@cern.ch, 2019
clear; close all;
addpath src
% R to mu function
mu = @(R) -log(1 - R);
% Test
test = 'KS'; % Kolmogorov-Smirnov (default)
%test = 'RMS'; % RMS
%test = 'KL'; % Kullback-Leibler
% Dirichtlet distribution concentration parameter
% (-1 is for constant p = 1/n, which should actually give integrated
% results the same as 1.0 for Dirichlet)
dpam_vals = [0.5 1.0]; %[-1 0.1 1.0];
% Number of repetations of random simulations
Nsim = 100; % Order of 50-500
% Number of observables (dimensionality of the vector space)
N_vals = [2 4 8]; % approx 14 is the maximum on standard PC
% Number of events per plot, units of 10^x
N_E_vals = [3 4 5];
% Mu-values range
mu_min = 1e-1;
mu_max = 30;
mu_steps = 12;
mu_values = logspace(log10(mu_min),log10(mu_max), mu_steps);
% Histogram values
MU_limit = 3;
% Fmincon options
options = optimoptions(@fmincon,'Display','iter','TolFun',1e-10,'TolX',1e-10);
% These are needed with optimization code
%global Nevents;
%global LAMBDA;
%global invLAMBDA;
%global C;
%global y;
% Different physical simulation scenarios
tic;
for dpam = dpam_vals
% Number of observables N = 2,5,8...
for w = 1:length(N_vals)
% Open up figures
f1 = figure;
f2 = figure;
% Legend texts of figure 1
legends_f1 = {};
legends_f2 = {};
d = N_vals(w); % Number of observables
n = 2^d - 1; % -> Number of components in binary vector
% Create combinatorics matrix and remove ID 0
C = createCBM(d);
C = C(2:end,:);
LAMBDA = sparse(amat(d));
invLAMBDA = inv(LAMBDA);
% Loop over trajectories of # events = 10^2, 10^4, 10^6 etc.
for o = 1:length(N_E_vals)
Nevents = 1*10^N_E_vals(o);
% Simulation output
X = zeros(2^d-1,Nsim,length(mu_values));
Y = zeros(2^d-1,Nsim,length(mu_values));
A = zeros(2^d-1,Nsim,length(mu_values));
O = zeros(2^d-1,Nsim,length(mu_values));
% Loop over mu-values
for z = 1:length(mu_values)
%global nu;
nu = mu_values(z); % Poisson mu-value
% Loop over toy MC samples (PARALLEL LOOP here)
parfor r = 1:Nsim
fprintf('Simulation %d/%d, N = %d (dimension), E = %d [log10(#events)], alpha = %0.1f \n', r, Nsim, d, log10(Nevents), dpam);
%% Create "physics model"
% All components with equal probabilities
if (dpam == -1)
x = ones(2^d-1,1); x = x / sum(x);
% Dirichlet distribution
else
alpha = ones(1,2^d-1) * dpam;
x = dirnd(alpha,1)';
end
% Make it column vector
x = x(:);
% Save input distribution
X(:,z,r) = x;
%% Create simulated data according to the fiducial rates
MCtest_X = zeros(d,Nevents); % Allocate memory here
MCtest_targets = randsample(1:2^d-1, Nevents, true, x)';
for i = 1:Nevents
MCtest_X(:,i) = C(MCtest_targets(i),:)';
end
% Pileup simulation
% Create the pileup mix
tic
[MC_pileup_X, MC_pileup_matrix, Nempty_BC] = poissonpileup_B(MCtest_X, MCtest_targets, nu, Nevents, size(C,1));
% Make it binary
MC_pileup_X = MC_pileup_X & ones(size(MC_pileup_X));
% Classify the events
MC_targets_pu = mybi2de(MC_pileup_X, 'right-msb');
fprintf('Poisson \\mu-value: %0.3f \n', nu);
%R_OR = (Nevents/(Nempty_BC + Nevents));
%R_OR = (1-exp(-nu))*(1 + sqrt(Nevents)*randn(1)/Nevents); % Add noise
R_OR = 1-exp(-nu);
fprintf('MC (trigger) rate: %0.5f (oracle truth: %0.5f)\n', R_OR, 1-exp(-nu));
toc
%% Create the corresponding "smearing" matrix for debug, visualization etc.
%{
if (o == length(length(N_E_vals)) && z == length(mu_values) && r == 1)
W = createsmearing(MC_targets_pu, MCtest_targets, C);
f3 = figure;
imagesc(log10(W));% title('Smearing matrix W');
axis square;
set(gca,'fontsize',12);
pdfcrop(0.7, 0.96);
cmd = sprintf('print -dpdf ../figs/Wmat/mixing_N%d_mu%0.2f_alpha%0.1f.pdf', d, nu, dpam);
eval(cmd);
close(f3);
end
%}
%% Count the measurement data
y = zeros(size(x));
for i = 1:length(y)
y(i) = sum(MC_targets_pu == i);
end
y = y / sum(y);
%% Error before correction
e_before = norm(y - x);
fprintf('Before inversion: L2-error: %0.6f \n', e_before);
% Save output
Y(:,z,r) = y;
%% Analytic "all-order" pileup correction
x_hat = analytic(y, R_OR, LAMBDA, invLAMBDA);
% For a large Poisson
% \mu we might get negative (non-sane) results => abs and renorm.
x_hat = abs(x_hat); x_hat = x_hat / sum(x_hat);
%% Error after inverse
e_anal = norm(x_hat - x);
fprintf('Analytic inversion: L2-error: %0.6f \n', e_anal);
% Save result
A(:,z,r) = x_hat;
%% Solve as a fixed order optimization problem
%{
global loops;
order = 5;
% Create pileup combination matrices
loops = cell(order,1);
for i = 1:order
loops{i} = loop(2^d-1, i);
end
x0 = x_hat;
Aeq = ones(1,length(x0)); beq = 1; % Unitarity constraint, sum of prob = 1
lb = zeros(size(x0)); % lower bound
ub = ones(size(x0)); % upper bound
x_hat_opt = fmincon(@nonlinear, x0, [], [], Aeq, beq, lb, ub, [],options);
e_optim = norm(x_hat_opt - x);
fprintf('Non-linear inversion: L2-error: %0.6f \n', e_optim);
% Save results
O(:,r,z) = x_hat_opt;
x_hat_opt - x_hat
fprintf('\n');
%}
end %% MC simulation
end %% Mu-values
% Save results
%save(sprintf('pileupsim_%0.0f_d%d_NBC%d.mat', now, d, log10(Nevents)), 'X','Y','A','O','d','mu_values','Nevents');
% Plotting data saved here
m_A = zeros(length(mu_values), 1);
cl_A = zeros(length(mu_values), 2);
m_Y = zeros(length(mu_values), 1);
cl_Y = zeros(length(mu_values), 2);
% Histogram variables
e_A_D = []; % Raw differences per component after correction
e_Y_D = []; % Raw differences per component before correction
% Plot figures
for z = 1:length(mu_values)
e_Y = zeros(Nsim,1); % Errors for before correction
e_A = zeros(Nsim,1); % Errors for after correction
X_ = squeeze(X(:,z,:));
Y_ = squeeze(Y(:,z,:));
A_ = squeeze(A(:,z,:));
% Take histogram only for low mu-values, because at high mu we
% are saturated -> no inversion
if (mu_values(z) < MU_limit)
% Calculate raw differences
% ESTIMATE - TRUE or \hat{p} - p
for r = 1:Nsim
residual_Y = Y_(:,r) - X_(:,r);
residual_A = A_(:,r) - X_(:,r);
% Save residuals
e_Y_D = [e_Y_D; residual_Y];
e_A_D = [e_A_D; residual_A];
% DEBUG
%fprintf('Before: %0.5f, After = %0.5f \n', norm(residual_Y), norm(residual_A));
end
end
% Metrics
if (strcmp(test,'KS')) % Kolmogorov-Smirnov
for r = 1:Nsim
e_A(r) = max(abs(cumsum(X_(:,r)) - cumsum(A_(:,r))));
e_Y(r) = max(abs(cumsum(X_(:,r)) - cumsum(Y_(:,r))));
end
elseif (strcmp(test,'RMS')) % root mean square
for r = 1:Nsim
e_A(r) = sqrt(mean((X_(:,r) - A_(:,r)).^2));
e_Y(r) = sqrt(mean((X_(:,r) - Y_(:,r)).^2));
end
elseif (strcmp(test,'KL')) % Kullback-Leibler
for r = 1:Nsim
kl = A_(:,r).*log2(A_(:,r)./X_(:,r)); kl(isnan(kl) | isinf(kl)) = 0;
e_A(r) = sum(kl);
kl = Y_(:,r).*log2(Y_(:,r)./X_(:,r)); kl(isnan(kl) | isinf(kl)) = 0;
e_Y(r) = sum(kl);
end
end
% Median and percentiles of the "metric"
m_A(z) = median(e_A);
cl_A(z,1) = m_A(z) - prctile(e_A,16);
cl_A(z,2) = prctile(e_A,84) - m_A(z);
m_Y(z) = median(e_Y);
cl_Y(z,1) = m_Y(z) - prctile(e_Y,16);
cl_Y(z,2) = prctile(e_Y,84) - m_Y(z);
end
% To the same plot
colors = {'k','b','r','g','y'};
% HISTOGRAMS HERE
BinEdges = linspace(-0.1,0.1,50);
BinCenter = (BinEdges(1:end-1) + BinEdges(2:end))/2;
fx = figure;
hY = histogram(e_Y_D, BinEdges);
hYvals = hY.Values;
close(fx);
fx = figure;
hA = histogram(e_A_D, BinEdges);
hAvals = hA.Values;
close(fx);
figure(f1);
yvals = hYvals / sum(hYvals); % Normalize to discrete probability density
avals = hAvals / sum(hAvals);
stephist(BinCenter, yvals, [colors{o} ':']); hold on; % measurement Y
stephist(BinCenter, avals, [colors{o} '-']); hold on; % inverted A
set(gca,'yscale','log');
% MSE (mean squared error) in the legend
legends_f1{end+1} = sprintf('$%0.1E$', mean(e_Y_D.^2));
legends_f1{end+1} = sprintf('$%0.1E$', mean(e_A_D.^2));
xlabel('$r_c$', 'interpreter', 'latex');
ylabel('$f(r_c)$', 'interpreter','latex'); % TURNED OFF TO SAVE SPACE
if (dpam ~= -1)
title(sprintf('$N = %d, \\alpha = %0.1f, \\mu \\in [%0.1f,%0.0f]$', d, dpam, mu_values(1), MU_limit),'interpreter','latex');
else
% constant case
title(sprintf('$N = %d, \\mu \\in [%0.1f,%0.0f]$', d, mu_values(1), MU_limit),'interpreter','latex');
end
axis square;
xlim([-0.1 0.1]); % manual scale x-axis
ylim([prctile(avals, 1) 1]); % manual scale y-axis
% ----------------------------------------------------------------
% CURVES HERE
figure(f2);
% Curves
%x_vals = linspace(mu_values(1), mu_values(end), 5);
%y_vals = ones(5,1)* (1/sqrt(Nevents)) * (1/sqrt(n));
% Theoretical lower bound
%loglog(x_vals, y_vals, 'color',[0.5 0.5 0.5],'linewidth', 1.20); hold on;
% Values
loglog(mu_values, m_Y(:), [colors{o} '.:']); hold on;
loglog(mu_values, m_A(:), [colors{o} 's-']);
%l = legend('Mixed','Inverted');
%set(l,'location','northwest');
%set(l,'Interpreter','Latex');
%legend('boxoff');
% Errorbars
errorbar(mu_values, m_Y(:), cl_Y(:,1), cl_Y(:,2), [colors{o} '.:']);
errorbar(mu_values, m_A(:), cl_A(:,1), cl_A(:,2), [colors{o} 's-']);
xlabel('$\mu$','interpreter','latex');
ylabel(sprintf('$%s$', test),'interpreter','latex');
if (dpam ~= -1)
title(sprintf('$N = %d, \\alpha = %0.1f$', d, dpam),'interpreter','latex');
else % Const case
title(sprintf('$N = %d$', d),'interpreter','latex');
end
axis square;
if (~strcmp(test, 'KL'))
axis([min(mu_values) max(mu_values) 1e-3 1]);
else
axis([min(mu_values) max(mu_values) 1e-5 100]);
end
%set(gca, 'XlimMode', 'auto');
%set(gca,'XTick', mu_values)
%grid on;
end %% N_E
% Plot histograms
figure(f1);
l = legend(legends_f1);
set(l,'Interpreter', 'Latex', 'location', 'northeast','fontsize',10);
set(gca,'fontsize', 13);
filename = sprintf('../figs/hist_N%d_alpha%0.1f.pdf', d, dpam);
print(f1, filename, '-dpdf');
system(sprintf('pdfcrop --margins 10 %s %s', filename, filename));
close(f1); % important
% Plot curves
figure(f2);
set(gca,'fontsize', 13);
filename = sprintf('../figs/%s_N%d_alpha%0.1f.pdf', test, d, dpam);
print(f2, filename, '-dpdf');
system(sprintf('pdfcrop --margins 10 %s %s', filename, filename));
close(f2); % important
end % d-values
end % Dirichlet distribution scenarios
toc;