-
Notifications
You must be signed in to change notification settings - Fork 1
/
PlotAGK.m
59 lines (45 loc) · 1.21 KB
/
PlotAGK.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
% Test AGK (Abramovski-Gribov-Kancheli) rules
%
% mikael.mieskolainen@cern.ch, 2019
clear; close all;
addpath src
kronsum = @(A,B) kron(A, eye(size(A))) + kron(eye(size(B)), B);
fprintf('\n');
C = zeros(12);
% Bartels-Ryskin matrix
R = [0 0 1/2;
0 1 0;
1 0 1/2];
% Number of Pomerons exchanged
for m = 1:size(C,1)
fprintf('%d ', m);
% Number of Pomerons cut
for k = 0:m
C(m,k+1) = AGK(m,k);
end
fprintf('\n');
end
C
C'
for i = 1:size(C,1)
fprintf('%d & ', i);
for j = 1:size(C,2)
fprintf('%d & ', C(i,j));
end
fprintf('\\\\ \n');
end
%% Plot
% Kronecker product of transition matrices
f1 = figure;
PRO = kron(R, kron(R, kron(R, R)));
imagesc(PRO); axis square; colormap(hot);
filename = sprintf('../figs/AGK_tensorprod.pdf');
print(f1, filename, '-dpdf');
system(sprintf('pdfcrop --margins 2 %s %s', filename, filename));
% Kronecker sum of transition matrices
f2 = figure;
SUM = kronsum(kronsum(R,R),kronsum(R,R))/4;
imagesc(SUM); axis square; colormap(hot);
filename = sprintf('../figs/AGK_tensorsum.pdf');
print(f2, filename, '-dpdf');
system(sprintf('pdfcrop --margins 2 %s %s', filename, filename));