https://arxiv.org/abs/2304.06010
https://arxiv.org/abs/1910.06300
https://indico.cern.ch/event/1148802/contributions/5004853 -- Diffraction and Low-x 2022 talk
See VERSION.json
for the latest version information.
See the page: https://mieskolainen.github.io
git clone --depth 1 https://github.com/mieskolainen/graniitti && cd graniitti
Standalone Ubuntu
sudo apt install cmake g++ python3-dev curl
CERN lxplus (CVMFS) environment
source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh LCG_98python3 x86_64-centos7-gcc9-opt
Conda environment with C++ compilation and Python analysis tools
wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh
chmod +x and execute the installer
conda env create -f environment.yml
conda activate graniitti
pip install -r requirements.txt
cd install && source autoinstall.sh && cd ..
source install/setenv.sh
make -j4
Set environment variables, then execute the main generator program
source install/setenv.sh
./bin/gr
See /docs/FAQ
for more information.
Simulate MC events
./bin/gr -i gencard/STAR_1792394_pipi.json -w true -l true -n 50000
(Python) Analyze MC and data
python python/iceshot --hepmc3 STAR_1792394_pipi --hepdata dataset_STAR_1792394_pipi --pid '[[211,-211]]' --cuts STAR_none
(Python) Compare MC with differential fiducial measurements made at RHIC/Tevatron/LHC
pytest tests/testbench_STAR_1792394.py -s --POMLOOP true
pytest tests/testbench_exloop.py -s --POMLOOP true
(Python) MC model tuning via HPC-distributed Bayesian / evolutionary optimization
ray start --head --temp-dir=/tmp/ray
python python/icetune --tuneset default
For C++ (ROOT) based analysis tools, see /docs/FAQ
and examples under /tests
.
Unit and integration tests
make -j4 TEST=TRUE && ./bin/testbench*
pytest tests/testbench_*.py -s
If you use this work in your research, please cite the paper:
@article{mieskolainen2019graniitti,
title={GRANIITTI: A Monte Carlo Event Generator for High Energy Diffraction},
author={Mikael Mieskolainen},
year={2019},
journal={arXiv:1910.06300},
eprint={1910.06300},
archivePrefix={arXiv},
primaryClass={hep-ph}
}