-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinfer.py
91 lines (68 loc) · 2.31 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
try:
import unzip_requirements
except ImportError:
pass
import json
import os
import tarfile
import boto3
import tensorflow as tf
import numpy as np
import census_data
FILE_DIR = '/tmp/'
BUCKET = os.environ['BUCKET']
def _easy_input_function(data_dict, batch_size=64):
"""
data_dict = {
'<csv_col_1>': ['<first_pred_value>', '<second_pred_value>']
'<csv_col_2>': ['<first_pred_value>', '<second_pred_value>']
...
}
"""
# Convert input data to numpy arrays
for col in data_dict:
col_ind = census_data._CSV_COLUMNS.index(col)
dtype = type(census_data._CSV_COLUMN_DEFAULTS[col_ind][0])
data_dict[col] = np.array(data_dict[col],
dtype=dtype)
labels = data_dict.pop('income_bracket')
ds = tf.data.Dataset.from_tensor_slices((data_dict, labels))
ds = ds.batch(64)
return ds
def inferHandler(event, context):
body = json.loads(event.get('body'))
# Read in prediction data as dictionary
# Keys should match _CSV_COLUMNS, values should be lists
predict_input = body['input']
# Read in epoch
epoch_files = body['epoch']
# Download model from S3 and extract
boto3.Session(
).resource('s3'
).Bucket(BUCKET
).download_file(
os.path.join(epoch_files,'model.tar.gz'),
FILE_DIR+'model.tar.gz')
tarfile.open(FILE_DIR+'model.tar.gz', 'r').extractall(FILE_DIR)
# Create feature columns
wide_cols, deep_cols = census_data.build_model_columns()
# Load model
classifier = tf.estimator.LinearClassifier(
feature_columns=wide_cols,
model_dir=FILE_DIR+'tmp/model_'+epoch_files+'/',
warm_start_from=FILE_DIR+'tmp/model_'+epoch_files+'/')
# Setup prediction
predict_iter = classifier.predict(
lambda:_easy_input_function(predict_input))
# Iterate over prediction and convert to lists
predictions = []
for prediction in predict_iter:
for key in prediction:
prediction[key] = prediction[key].tolist()
predictions.append(prediction)
response = {
"statusCode": 200,
"body": json.dumps(predictions,
default=lambda x: x.decode('utf-8'))
}
return response