-
Notifications
You must be signed in to change notification settings - Fork 9
/
constants.ml
199 lines (180 loc) · 8.99 KB
/
constants.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
open Testutil.Repl
open Core
let () =
run @@ fun () ->
(* Church numerals *)
def "CN" "Type" "(A : Type) → (A → A) → (A → A)";
def "zero" "CN" "A f x ↦ x";
def "one" "CN" "A f x ↦ f x";
def "two" "CN" "A f x ↦ f (f x)";
def "three" "CN" "A f x ↦ f (f (f x))";
def "four" "CN" "A f x ↦ f (f (f (f x)))";
equal_at "one" "one" "CN";
unequal_at "one" "zero" "CN";
def "cplus" "CN → CN → CN" "m n A f x ↦ m A f (n A f x)";
equal_at "cplus one one" "two" "CN";
unequal_at "cplus one two" "two" "CN";
def "ctimes" "CN → CN → CN" "m n A f x ↦ m A (n A f) x";
equal_at "ctimes two two" "four" "CN";
(* Sigma-types *)
def "Σ" "(A : Type) → (A → Type) → Type" "A B ↦ sig ( fst : A, snd : B fst)";
def "zero_zero" "Σ CN (_ ↦ CN)" "( zero, zero )";
equal_at "zero_zero .fst" "zero" "CN";
equal_at "zero_zero .snd" "zero" "CN";
assume "A" "Type";
assume "B" "A → Type";
assume "a" "A";
assume "b" "B a";
def "ab" "Σ A B" "(fst ≔ a, snd ≔ b)";
equal_at "ab .fst" "a" "A";
equal_at "ab .snd" "b" "B a";
equal_at "ab .0" "a" "A";
equal_at "ab .1" "b" "B a";
(match Global.find (Option.get (Parser.Scope.lookup [ "ab" ])) with
| _, Defined _ -> ()
| _ -> raise (Failure "pair wasn't defined to be a tree"));
def "zero_zero'" "Σ CN (_ ↦ CN)" "( fst ≔ zero , snd ≔ zero )";
equal_at "zero_zero" "zero_zero'" "Σ CN (_ ↦ CN)";
(* Pi-types *)
(* These are built in, of course, but we also have a named constant for them. *)
equal_at "(x:A) → B x" "Π A B" "Type";
(* In particular, this gives a way for the user to write higher-dimensional Π-types. *)
equal_at "refl ((x:A) → B x)" "refl Π A A (refl A) B B (refl B)"
"Id Type ((x:A) → B x) ((x:A) → B x)";
(* Coinductive streams *)
def "Stream" "Type → Type" "A ↦ codata [ _ .head : A | _ .tail : Stream A ]";
def "zeros" "Stream CN" "[ .head ↦ zero | .tail ↦ zeros ]";
equal_at "zeros .head" "zero" "CN";
equal_at "zeros .tail .head" "zero" "CN";
equal_at "zeros .tail .tail .head" "zero" "CN";
equal_at "zeros .tail .tail .tail .head" "zero" "CN";
def "nats" "CN → Stream CN" "n ↦ [ .head ↦ n | .tail ↦ nats (cplus n one) ]";
equal_at "nats zero .tail .tail .head" "two" "CN";
equal_at "nats zero .tail .tail .tail .tail .head" "four" "CN";
(* Bisimulation *)
def "∞eta" "Stream A → Stream A" "s ↦ [ .head ↦ s .head | .tail ↦ ∞eta (s .tail) ]";
unequal_at "s ↦ s" "s ↦ ∞eta s" "Stream A → Stream A";
def "∞eta_bisim" "(s:Stream A) → Id (Stream A) s (∞eta s)"
"s ↦ [ .head ↦ refl (s .head) | .tail ↦ ∞eta_bisim (s .tail) ]";
(* Natural numbers *)
def "ℕ" "Type" "data [ zero. | suc. (_ : ℕ) ]";
def "Nat" "Type" "ℕ";
def "plus" "ℕ → ℕ → ℕ"
"m n ↦ match n [
| zero. ↦ m
| suc. n ↦ suc. (plus m n)
]";
def "times" "ℕ → ℕ → ℕ"
"m n ↦ match n [
| zero. ↦ zero.
| suc. n ↦ plus (times m n) m
]";
(* Lists *)
def "List" "Type → Type" "A ↦ data [ nil. | cons. (x:A) (xs:List A) ]";
def "append" "(A:Type) -> List A -> List A -> List A"
"A xs ys ↦ match xs [
| nil. ↦ ys
| cons. x xs ↦ cons. x (append A xs ys)
]";
equal_at "append ℕ (cons. 0 nil.) (cons. 1 (cons. 2 nil.))" "cons. 0 (cons. 1 (cons. 2 nil.))"
"List ℕ";
(* Vectors *)
def "Vec" "Type → ℕ → Type"
"A ↦ data [ nil. : Vec A 0 | cons. : (n:ℕ) → A → Vec A n → Vec A (suc. n) ]";
def "lplus" "ℕ -> ℕ -> ℕ" "m n ↦ match m [
| zero. ↦ n
| suc. m ↦ suc. (lplus m n)
]";
def "vappend" "(A:Type) (m n : ℕ) -> Vec A m -> Vec A n -> Vec A (lplus m n)"
"A m n xs ys ↦ match xs [
| nil. ↦ ys
| cons. k z zs ↦ cons. (lplus k n) z (vappend A k n zs ys)
]";
equal_at "vappend ℕ 1 2 (cons. 0 0 nil.) (cons. 1 1 (cons. 0 2 nil.))"
"cons. 2 0 (cons. 1 1 (cons. 0 2 nil.))" "Vec ℕ 3";
(* Matching lambda *)
def "exp" "ℕ → ℕ → ℕ" "m ↦ [
| zero. ↦ suc. zero.
| suc. n ↦ times (exp m n) m
]";
equal_at "exp 3 2" "9" "ℕ";
def "exp2" "ℕ → ℕ → ℕ" "m ↦ [ zero. ↦ suc. zero. | suc. n ↦ times (exp m n) m ]";
equal_at "exp2 2 3" "8" "ℕ";
(* Empty type *)
def "∅" "Type" "data []";
def "abort1" "(A:Type) → ∅ → A" "A ↦ [ ]";
def "abort2" "(A:Type) → ∅ → A" "A x ↦ match x [ ]";
(* Higher-dimensional lambdas in case trees. This simple version doesn't actually need them, as it could be just an ordinary higher-dimensional lambda term at a leaf. *)
assume "f" "(x:A)→B x";
def "reflf" "Id ((x:A)→B x) f f" "x₀ x₁ x₂ ↦ refl f x₀ x₁ x₂";
def "reflf_eq_reflf" "Id (Id ((x:A)→B x) f f) reflf (refl f)" "refl (refl f)";
(* To test that we actually allow higher-dimensional lambdas in case trees, we need to do some case-tree-only thing inside the lambda, like a match. *)
def "refl_abort_f" "∅ → Id ((x:A)→B x) f f" "e x₀ x₁ x₂ ↦ match e [ ]";
def "refl_nat_f" "ℕ → Id ((x:A)→B x) f f"
"n x₀ x₁ x₂ ↦ match n [ zero. ↦ refl f x₀ x₁ x₂ | suc. _ ↦ refl f x₀ x₁ x₂ ]";
def "refl_nat_f_eq_reflf" "Id (Id ((x:A)→B x) f f) (refl_nat_f zero.) (refl f)" "refl (refl f)";
(* We also test cube variable abstraction syntax *)
def "refl_abort_f_cube" "∅ → Id ((x:A)→B x) f f" "e x ⤇ match e [ ]";
def "refl_nat_f_cube" "ℕ → Id ((x:A)→B x) f f"
"n x ⤇ match n [ zero. ↦ refl f x.0 x.1 x.2 | suc. _ ↦ refl f x.0 x.1 x.2 ]";
(* These are actually *unequal* because definition by case trees is generative. *)
unequal_at "refl_nat_f" "refl_nat_f_cube" "ℕ → Id ((x:A)→B x) f f";
(* But they become equal when evaluated at concrete numbers so that the case trees compute away. *)
equal_at "refl_nat_f 3" "refl_nat_f_cube 3" "Id ((x:A)→B x) f f";
(* Higher-dimensional matches *)
def "foo" "(x y : ℕ) → Id ℕ x y → ℕ" "x y p ↦ match p [ zero. ↦ 0 | suc. n ↦ 1 ]";
def "bar" "(x y : ℕ) → Id ℕ x y → ℕ" "x y ↦ [ zero. ↦ zero. | suc. p ↦ p.0 ]";
equal_at "bar 1 1 (refl (1:ℕ))" "0" "ℕ";
equal_at "bar 2 2 (refl (2:ℕ))" "1" "ℕ";
def "prec" "ℕ → ℕ" "[ zero. ↦ zero. | suc. n ↦ n ]";
def "idnat" "(x y : ℕ) → Id ℕ x y → Id ℕ x y" "x y ↦ [ zero. ↦ zero. | suc. p ↦ suc. p ]";
def "apprec" "(x y : ℕ) → Id ℕ x y → Id ℕ (prec x) (prec y)"
"x y p ↦ match p [ zero. ↦ zero. | suc. p ↦ p ]";
def "⊤" "Type" "sig ()";
def "code" "ℕ → ℕ → Type"
"[ zero. ↦ [ zero. ↦ ⊤
| suc. _ ↦ ∅ ]
| suc. m ↦ [ zero. ↦ ∅
| suc. n ↦ code m n ] ]";
def "rcode" "(x:ℕ) → code x x" "[ zero. ↦ () | suc. n ↦ rcode n ]";
def "encode" "(x y : ℕ) → Id ℕ x y → code x y"
"x y ↦ [ zero. ↦ ()
| suc. p ↦ encode p.0 p.1 p.2 ]";
def "decode" "(x y : ℕ) → code x y → Id ℕ x y"
"x y c |-> match x [ zero. ↦ match y [ zero. ↦ zero.
| suc. _ ↦ match c [ ] ]
| suc. x ↦ match y [ zero. ↦ match c [ ]
| suc. y ↦ suc. (decode x y c) ] ]";
def "encode_decode" "(x y : ℕ) (c : code x y) → Id (code x y) (encode x y (decode x y c)) c"
"[ zero. ↦ [ zero. ↦ _ ↦ ()
| suc. _ ↦ [ ] ]
| suc. x ↦ [ zero. ↦ [ ]
| suc. y ↦ c ↦ encode_decode x y c ] ]";
def "decode_encode" "(x y : ℕ) (p : Id ℕ x y) → Id (Id ℕ x y) (decode x y (encode x y p)) p"
"x y ↦ [ zero. ↦ zero.
| suc. p ↦ suc. (decode_encode p.0 p.1 p.2) ]";
(* Matching on a boundary of a cube variable. *)
def "mtchbd0" "(e:∅) (f : ℕ → ℕ) → Id (ℕ → ℕ) f f"
"e f n ⤇ match n.0 [ zero. ↦ match e [ ] | suc. _ ↦ match e [ ] ]";
def "mtchbd0'" "(e:∅) (f : ℕ → ℕ) → Id (ℕ → ℕ) f f"
"e f n ⤇ match n.0 [ zero. ↦ match e [ ] | suc. _ ↦ refl f n.0 n.1 n.2 ]";
def "mtchbd0''" "(e:∅) (f : ℕ → ℕ) → Id (ℕ → ℕ) f f"
"e f n0 n1 n2 ↦ match n0 [ zero. ↦ match e [ ] | suc. _ ↦ refl f n0 n1 n2 ]";
(* Matching inside a tuple *)
def "mtchtup" "ℕ → Σ Type (X ↦ (X → X))" "n ↦ ( match n [ zero. ↦ ℕ | suc. _ ↦ ℕ ], x ↦ x )";
def "mtchtup2" "ℕ → Σ ℕ (x ↦ Id ℕ x 0)"
"n ↦ ( fst := match n [ zero. |-> 0 | suc. _ |-> 0 ],
snd := match n [ zero. |-> refl (0:Nat) | suc. _ |-> refl (0:Nat) ])";
(* Covectors (canonical types defined inside a match) *)
def "Covec" "Type → ℕ → Type"
"A n ↦ match n [ zero. ↦ sig () | suc. n ↦ sig ( car : A, cdr : Covec A n ) ]";
def "nil" "Covec ℕ 0" "()";
def "onetwo" "Covec ℕ 2" "(1,(2,()))";
equal_at "onetwo .0" "1" "ℕ";
equal_at "onetwo .1 .0" "2" "ℕ";
equal_at "onetwo .1 .1" "()" "Covec ℕ 0";
def "coconcat" "(A:Type) (m n : ℕ) → Covec A m → Covec A n → Covec A (lplus m n)"
"A m n v w ↦ match m [
| zero. ↦ w
| suc. m ↦ (v .0 , coconcat A m n (v .1) w) ]";
()