-
Notifications
You must be signed in to change notification settings - Fork 6
/
rho.m
272 lines (225 loc) · 9.19 KB
/
rho.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
function [maxnoncov, lf_t, lf_p] = rho(m2, kappa, chi, varargin)
% Maximal non-coverage of EBCI based on second moment m_2,
% kurtosis kappa, and critical value chi
% Inputs:
% m2 1 x 1 second moment
% kappa 1 x 1 kurtosis (set to [] or Inf if kappa=Inf)
% chi 1 x 1 critical value
% varargin struct optional: {1} optimization options (set to [] if default options)
% Outputs:
% maxnoncov 1 x 1 maximal non-coverage probability
% lf_t 1 x q support points for least-favorable (LF) distribution for t=b^2
% lf_p 1 x q probability masses for LF distribution for t=b^2
if isempty(kappa)
kappa = Inf;
end
% If distribution is a point mass
if kappa==1
maxnoncov = r(m2, chi);
lf_t = m2;
lf_p = 1;
return;
end
% Optimization options struct
if isempty(varargin)
opt_struct = opt_struct_default();
else
opt_struct = varargin{1};
end
% Otherwise, first solve problem with only second moment
[maxnoncov, t0, ip, lf_t, lf_p] = rho0(m2, chi, opt_struct);
% If the above solution already satisfies kurtosis bound, we're done
if lf_p*(lf_t.^2)' <= kappa*m2^2
return;
end
% Otherwise, solve the optimization that imposes kappa bound
% First determine where delta(x, x_0) is maximized
[~, tbar] = lam(0, chi, t0, ip, opt_struct);
% Optimize separately below and above bar{t}, since there are
% typically multiple local minima
obj = @(x0) r(x0, chi) + r1(x0, chi)*(m2-x0) ...
+ lammax(x0, chi, t0, ip, tbar, opt_struct) * (kappa*m2^2-2*x0*m2+x0^2);
if tbar>0
[x0opt_below,maxnoncov_below] = fminbnd(obj, 0, tbar, opt_struct.fminbnd); % Solution below bar{t}
else
x0opt_below = 0;
maxnoncov_below = obj(0);
end
[x0opt, maxnoncov] = fminbnd(obj, tbar, t0, opt_struct.fminbnd); % Solution above bar{t}
if maxnoncov_below<maxnoncov
x0opt = x0opt_below;
maxnoncov = maxnoncov_below;
end
% Least favorable (LF) distribution
[~, xopt] = lam(x0opt, chi, t0, ip, opt_struct);
lf_t = sort([x0opt xopt]); % Support points
p = (m2-lf_t(2))/(lf_t(1)-lf_t(2));
lf_p = [p 1-p]; % Probability masses
% Non-coverage rate, m_2, and kappa at LF solution
primal_maxnoncov = r(lf_t, chi)*lf_p';
primal_m2 = lf_t*lf_p';
primal_kappa = (lf_t.^2)*lf_p'/primal_m2^2;
% If LF solution is close to dual, no need to check linear program.
% Otherwise, double-check we found the optimum by solving the primal
if max([maxnoncov m2 kappa] - [primal_maxnoncov primal_m2 primal_kappa]) > 1e-4 ...
&& (isfield(opt_struct, 'check') && opt_struct.check)
% Add m_2 here for cases where it's very small, so we can satisfy
% the constraint.
xs = unique([m2 lf_t linspace(0, t0, opt_struct.numgrid)], 'sorted');
numgrid = length(xs);
[~, mopt, exitflag] = linprog(-r(xs, chi)', ... % Objective
xs.^2, kappa*m2^2, ... % Inequality constraint
[ones(1,numgrid); xs], [1; m2], ... % Equality constraints
zeros(1,numgrid), [], opt_struct.linprog);
opt = -mopt;
if exitflag~=1 || abs(opt-maxnoncov)>1e-4
warning('%s%f\n%s%f\n%s\n%s%f%s%f%s%f', ...
'Linear program finds non-coverage ', opt, ...
'Direct approach finds non-coverage ', maxnoncov, ...
'Difference>0.001. This happened for', ...
'chi=', chi, ', mu_2=', m2, ', kappa=', kappa);
end
end
end
function [maxnoncov, t0, ip, lf_t, lf_p] = rho0(t, chi, opt_struct)
% Maximal non-coverage based only on second moment
[t0, ip] = rt0(chi, opt_struct);
if t<t0 % Least favorable distribution has two mass points
lf_t = [0 t0];
lf_p = [1-t/t0 t/t0];
else % Least favorable distribution has one mass point
lf_t = t;
lf_p = 1;
end
maxnoncov = lf_p*r(lf_t,chi)';
end
function [val, xmax] = lam(x0, chi, t0, ip, opt_struct)
% Maximize delta(x, x_0, chi) over x
% Check derivatives at 0, inflection point, t0, and x0. If we're above
% inflection point, then maximum is below it, and it's at zero if
% derivative at zero is negative. Otherwise between 0 and inflection
% point.
xs = sort([t0 ip]);
if x0 >= xs(1)
xs = [0 xs(1)];
else
xs = unique([0 x0 xs]);
end
vals = delta(xs, x0, chi);
ders = delta1(xs, x0, chi);
% Default return value: optimum at 0
val = vals(1);
xmax = 0;
% Expect delta has single maximum, so first increasing, then
% decreasing, up to numerical tolerance
if all(ders<=0) && vals(1)==max(vals)
% Maximum at 0
return;
elseif all(diff(ders>=0)<=0) && ders(end)<=0
% Function first increasing, then decreasing
the_ind = max(find(ders<0,1),2); % In case all derivatives are negative
if isempty(the_ind)
the_ind = length(xs);
end
the_start = xs(the_ind-1);
the_end = xs(the_ind);
elseif (min(abs(ders)) < 1e-6)
% Determine interval based on value of delta,
% numerical accuracy of delta1 only 7e-6
[~,the_ind_max] = max(vals);
the_start = xs(max(the_ind_max-1, 1));
the_end = xs(min(the_ind_max+1, length(xs)));
else
error('%s%f%s%f%s', 'There are multiple local optima in the function delta(x, x0=', x0, ', chi=', chi, ').');
end
% Numerical optimization
[the_xmax, mdelta] = fminbnd(@(x) -delta(x, x0, chi), the_start, the_end, opt_struct.fminbnd);
% Check optimum at 0 not substantially higher, we could miss it due to numerical accuracy issues
if -mdelta > vals(1)
val = -mdelta;
xmax = the_xmax;
elseif -mdelta < vals(1)-1e-9
warning('%s%f%s%f%s', 'Optimum may be wrong for lam(x0=', x0, ', chi=', chi, ').');
end
end
function val = lammax(x0, chi, t0, ip, tbar, opt_struct)
if x0 >= tbar
val = delta(0, x0, chi);
else
val = lam(x0, chi, t0, ip, opt_struct);
end
end
function [t0, ip] = rt0(chi, opt_struct)
% Find t_0 and inflection point, called t_1 in the paper
if chi<sqrt(3)
t0 = 0;
ip = 0;
else
% Find inflection point
% Avoid issues when chi is numerically very large
if abs(r2(chi^2-3/2, chi))<1e-12 || (chi^2-3)==chi^2
ip = chi^2-3/2;
else
ip = fzero(@(tt) r2(tt,chi), [chi^2-3, chi^2], opt_struct.fzero);
end
% Find t_0
f0 = @(tt) r(tt,chi)-tt.*r1(tt,chi)-r(0,chi);
% Make sure upper endpoint of interval is positive; it always is for
% chi< 100,000, so we should never enter the while loop
lo = ip;
up = 2*chi^2;
while f0(up) < 0
lo = up;
up = 2*up;
end
t0 = lo;
if f0(lo) < 0
t0 = fzero(f0, [lo up], opt_struct.fzero);
elseif f0(lo) > 1e-12
warning('%s%f', 'Failed to solve for t0 using rt0 at chi=', chi);
end
end
end
function val = r(t, chi)
% Function called r_0 in paper
idx = (sqrt(t)-chi<=5);
val = ones(size(t));
val(idx) = normcdf(-sqrt(t(idx))-chi) + normcdf(sqrt(t(idx))-chi);
end
function val = r1(t, chi)
% First derivative of r
% Apply l'Hopital's rule. This gives maximum absolute error 1e-9.
idx = (t>=1e-8);
val = repmat(chi*normpdf(chi), size(t));
val(idx) = (normpdf(sqrt(t(idx))-chi)-normpdf(sqrt(t(idx))+chi))./(2*sqrt(t(idx)));
end
function val = r2(t, chi)
% Second derivative of r
% Apply L'Hopital's rule 3x. This gives maximum abs error about 8e-8.
idx = (t>=2e-6);
val = repmat(normpdf(chi)*chi*(chi^2-3)/6, size(t));
val(idx) = (normpdf(sqrt(t(idx))+chi).*(chi*sqrt(t(idx))+t(idx)+1) ...
+ normpdf(sqrt(t(idx))-chi).*(chi*sqrt(t(idx))-t(idx)-1)) ...
./ (4*t(idx).^(3/2));
end
function val = r3(t, chi)
% Third derivative of r
% Apply L'Hopital's rule 5x. This gives maximum abs error about 3e-6.
idx = (t>=2e-4);
val = repmat(normpdf(chi)*(chi^5-10*chi^3+15*chi)/60, size(t));
val(idx) = (normpdf(chi-sqrt(t(idx))).*(t(idx).^2-2*chi*t(idx).^(3/2)+(2+chi^2)*t(idx)-3*chi*sqrt(t(idx))+3) ...
- normpdf(chi+sqrt(t(idx))).*(t(idx).^2+2*chi*t(idx).^(3/2)+(2+chi^2)*t(idx)+3*chi*sqrt(t(idx))+3)) ...
./ (8*t(idx).^(5/2));
end
function val = delta(x, x0, chi)
% Apply L'Hopital's rule 2x. This gives maximum abs error about 1e-7.
idx = (abs(x-x0)>=1e-4);
val = repmat(r2(x0, chi)/2, size(x));
val(idx) = (r(x(idx), chi) - r(x0, chi) - r1(x0, chi).*(x(idx)-x0)) ./ (x(idx)-x0).^2;
end
function val = delta1(x, x0, chi)
% Apply L'Hospital's rule 2x. This gives maximum abs error about 7e-6.
idx = (abs(x-x0)>=1e-3);
val = repmat(r3(x0, chi)/6, size(x));
val(idx) = ((r1(x(idx), chi)+r1(x0, chi))-2*(r(x(idx), chi)-r(x0, chi))./(x(idx)-x0))./(x(idx)-x0).^2;
end