forked from snavely/texture_mapping
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FullTextureMapper.py
544 lines (452 loc) · 22.3 KB
/
FullTextureMapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# Script for generating a "full" texture map for a primitive model,
# including sidewalls, given a collection of images with camera poses.
import os
os.environ["PYOPENGL_PLATFORM"] = "egl"
import json
import re
import numpy as np
import argparse
import trimesh
import pyrender
import png
import time
import cv2
from pyquaternion import Quaternion
from satellite_stereo.lib import latlon_utm_converter
from satellite_stereo.lib import latlonalt_enu_converter
from satellite_stereo.lib.plyfile import PlyData, PlyElement
# Compute the dimensions of a new image resized such that the max
# dimension (width or height) is at most max_dim. Returns a tuple
# (resized_width, resized_height).
def resized_image_dims_for_max_dim(imwidth, imheight, max_dim):
if imwidth <= max_dim and imheight <= max_dim:
return (imwidth, imheight)
if float(imwidth) / max_dim > float(imheight) / max_dim:
resized_dims = (max_dim,
int(round(float(imheight) * max_dim / imwidth)))
else:
resized_dims = (int(round(float(imwidth) * max_dim / imheight)),
max_dim)
return resized_dims
# Resize the provided color buffer to the provided maximum size (on
# either dimension), and save to a png file called 'image_name'.
def resize_and_save_color_buffer_to_png(image, max_dim, image_name):
height = np.shape(image)[0]
width = np.shape(image)[1]
if width <= max_dim and height <= max_dim:
png.from_array(image, 'RGB').save(image_name)
else:
resized_dims = resized_image_dims_for_max_dim(width, height, max_dim)
resized = cv2.resize(image, dsize=resized_dims,
interpolation=cv2.INTER_AREA)
png.from_array(resized, 'RGB').save(image_name)
# Transform a depth map to the range [0,255].
def normalize_and_discretize_depth_buffer(depth):
# Depth of zero is a sentinel value.
depth_masked = np.ma.masked_equal(depth, 0.0)
depth_min = depth_masked.min(axis=0).min(axis=0)
depth_max = depth_masked.max(axis=0).max(axis=0)
depth_normalized = (255 * (depth_masked - depth_min) /
(depth_max - depth_min)).filled(0).astype(np.uint8)
return depth_normalized
# Normalize the values of and resize the provided depth buffer to the
# provided maximum size (on either dimension), and save to a png file
# called 'image_name'.
def resize_and_save_depth_buffer_to_png(depth, max_dim, image_name):
depth_normalized = normalize_and_discretize_depth_buffer(depth)
height = np.shape(depth_normalized)[0]
width = np.shape(depth_normalized)[1]
if width <= max_dim and height <= max_dim:
png.from_array(depth_normalized, 'L').save(image_name)
else:
resized_dims = resized_image_dims_for_max_dim(width, height, max_dim)
resized = cv2.resize(depth_normalized, dsize=resized_dims,
interpolation=cv2.INTER_AREA)
png.from_array(resized, 'L').save(image_name)
def unit_projection_onto_plane(vector, normal):
projection = vector - np.dot(vector, normal) * normal
return projection / np.linalg.norm(projection)
class PerspectiveCamera(object):
def __init__(self, image_name, camera_spec):
self.image_name = image_name
self.width = camera_spec[0]
self.height = camera_spec[1]
self.K = np.array([[camera_spec[2], 0.0, camera_spec[4]],
[ 0.0, camera_spec[3], camera_spec[5]],
[ 0.0, 0.0, 1.0]])
quat = Quaternion(camera_spec[6], camera_spec[7],
camera_spec[8], camera_spec[9])
self.R = quat.rotation_matrix
self.t = np.array([camera_spec[10],
camera_spec[11],
camera_spec[12]]).transpose()
# Convert pose from Y-Down to Y-Up ("OpenGL") coordinates.
X180 = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])
self.R = np.dot(X180, self.R)
self.t = np.dot(X180, self.t)
self.pose = np.concatenate(
(np.concatenate((self.R, np.expand_dims(self.t, axis=1)), axis=1),
np.array([[0, 0, 0, 1]])), axis=0)
# OpenGL expects us to provide a camera-to-world transform, so
# invert the pose.
self.pose = np.linalg.inv(self.pose)
# Save the "standard" y-down pose as well.
self.ydown_pose = np.concatenate(
(np.concatenate((self.R, np.expand_dims(self.t, axis=1)), axis=1),
np.array([[0, 0, 0, 1]])), axis=0)
# Compute a reasonable zNear and zFar, based on the projection
# of the camera location on the (negative) viewing direction,
# assuming that the scene is located near the origin.
camera_pos = -np.dot(np.transpose(self.R), self.t)
view_dir = np.dot(np.transpose(self.R),
np.array([[0.0], [0.0], [-1.0]]))
scene_distance = -np.dot(np.transpose(camera_pos), view_dir)
znear = max(scene_distance - 1e5, 1.0)
zfar = scene_distance + 1e5
self.pyrender_camera = pyrender.IntrinsicsCamera(
fx=camera_spec[2], fy=camera_spec[3],
cx=camera_spec[4], cy=camera_spec[5],
znear=znear, zfar=zfar, name=image_name)
def project(self, point):
proj3 = np.dot(self.K, np.dot(self.R, np.transpose(point)) + self.t)
proj = np.array([-proj3[0] / proj3[2],
-proj3[1] / proj3[2]]).transpose()
return proj
class Reconstruction(object):
def __init__(self, recon_path):
if not os.path.isabs(recon_path):
fpath = os.path.abspath(recon_path)
self.recon_path = recon_path
# Get metadata from aoi.json file.
with open(os.path.join(recon_path, 'aoi.json')) as fp:
self.bbox = json.load(fp)
self.lat0 = (self.bbox['lat_min'] + self.bbox['lat_max']) / 2.0
self.lon0 = (self.bbox['lon_min'] + self.bbox['lon_max']) / 2.0
self.alt0 = self.bbox['alt_min']
# Read the UTM zone information.
self.utm_zone = self.bbox['zone_number']
self.hemisphere = self.bbox['hemisphere']
# Read the camera data.
with open(
os.path.join(
recon_path,
'colmap/sfm_pinhole/debug/kai_cameras.json')) as fp:
# 'colmap/skew_correct/pinhole_dict.json')) as fp:
camera_data = json.load(fp)
self.cameras = {}
for image, camera in camera_data.items():
self.cameras[image] = PerspectiveCamera(image, camera)
def write_meta(self, fname):
with open(fname, 'w') as fp:
json.dump(self.meta, fp, indent=2)
def utm_to_enu(self, points):
# Convert points in UTM coordinates to ENU.
lat, lon = latlon_utm_converter.eastnorth_to_latlon(points[:, 0:1],
points[:, 1:2],
self.utm_zone,
self.hemisphere)
alt = points[:, 2:3]
x, y, z = latlonalt_enu_converter.latlonalt_to_enu(lat, lon, alt,
self.lat0,
self.lon0,
self.alt0)
return np.concatenate((x, y, z), axis=1)
def norm_coord(self, point):
# the point is in utm coordinate
# (easting, northing, elevation)
(x, y, z) = point
u = (x - self.ll[0]) / (self.lr[0] - self.ll[0])
v = (y - self.ll[1]) / (self.ul[1] - self.ll[1])
return u, v
class FullTextureMapper(object):
def __init__(self, ply_path, recon_path):
self.reconstruction = Reconstruction(recon_path)
self.ply_data = PlyData.read(ply_path)
self.vertices = self.ply_data.elements[0]
self.faces = self.ply_data.elements[1]
self.tmesh = trimesh.load(ply_path)
# Transform vertices from UTM to ENU.
vertices_enu = self.reconstruction.utm_to_enu(self.tmesh.vertices)
print 'tmesh.vertices_enu:', vertices_enu[0:2, :]
self.tmesh.vertices = vertices_enu
# self.tmesh.export('./mesh_enu.ply')
# Recolor the facets.
num_facets = self.tmesh.facets.size
print 'number of facets:', num_facets
facet_index = long(0)
# TODO(snavely): Why are some facets showing up as gray? Are
# they somehow facing the wrong direction? Do those faces not
# show up in the list of facets?
for facet in self.tmesh.facets:
# Random trimesh colors have random hue but nearly full
# saturation and value. Useful for visualization and
# debugging.
# tmesh.visual.face_colors[facet] = trimesh.visual.random_color()
# self.rectifying_homography(None, facet_index, 100)
r, g, b = self.color_index_to_color(facet_index + 1)
# Last 255 is for alpha channel (fully opaque).
self.tmesh.visual.face_colors[facet] = np.array((r, g, b, 255))
facet_index = facet_index + 1
self.mesh = pyrender.Mesh.from_trimesh(self.tmesh, smooth=False)
self.scene = pyrender.Scene(ambient_light=(1.0, 1.0, 1.0))
self.scene.add(self.mesh)
self.ply_textured = None
# self.texture_ply()
def color_index_to_color(self, color_index):
# red is the lower 8-bits, then green, then blue.
r = color_index & 0xff
g = (color_index >> 8) & 0xff
b = (color_index >> 16) & 0xff
return r, g, b
def color_buffer_to_color_indices(self, color):
# red is the lower 8-bits, then green, then blue.
color_indices = (
color[:,:,0] + 0xff * color[:,:,1] + 0xffff * color[:,:,2])
return color_indices
def test_rendering(self):
width = 2000
height = 2000
renderer = pyrender.OffscreenRenderer(width, height)
test_camera = pyrender.IntrinsicsCamera(
fx=866.0 * 1000.0, fy=866.0 * 1000.0, cx=1000.0, cy=0.0, #cy=1000.0,
znear=1000.0, zfar=1.0e8)
test_camera_pose = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 1.0e6],
[0, 0, 0, 1]])
self.scene.add(test_camera, pose=test_camera_pose)
t = time.time()
color, depth = renderer.render(self.scene)
elapsed = time.time() - t
print 'Time to render:', elapsed
resize_and_save_color_buffer_to_png(color, 2048, 'test_render.png')
resize_and_save_depth_buffer_to_png(depth, 2048, 'test_depth.png')
def test_rendering_on_real_camera(self):
image, camera = (self.reconstruction.cameras.items())[1]
print 'rendering image', image
color, depth = self.render_from_camera(camera)
# png.from_array(color, 'RGB').save(image + '_render.png')
resize_and_save_color_buffer_to_png(color, 1024, image + '_render.png')
resize_and_save_depth_buffer_to_png(depth, 1024, image + '_depth.png')
# Render the loaded scene from the provided camera. Returns color
# and depth buffers.
def render_from_camera(self, camera):
renderer = pyrender.OffscreenRenderer(camera.width, camera.height)
node = self.scene.add(camera.pyrender_camera, pose=camera.pose)
t = time.time()
color, depth = renderer.render(self.scene)
elapsed = time.time() - t
print 'Time to render:', elapsed
self.scene.remove_node(node)
return color, depth
def create_textures(self):
num_cameras = len(self.reconstruction.cameras)
num_facets = self.tmesh.facets.size
print 'num_cameras:', num_cameras
print 'num_facets:', num_facets
# Num cameras by num facets matrix counting the visibility of
# each facet in each image
facet_pixel_counts = np.zeros((num_cameras, num_facets),
dtype=np.int16)
camera_index = 0
for image, camera in self.reconstruction.cameras.items():
print 'rendering image', image
print 'camera.K:'
print camera.K
print 'camera.pose (inverse):'
print camera.pose
color, depth = self.render_from_camera(camera)
# Count number of times each color appears.
color_indices = self.color_buffer_to_color_indices(color)
elems, counts = np.unique(color_indices, return_counts=True)
print 'unique colors:', elems.size
for elem, count in zip(elems, counts):
if elem > 0 and elem <= num_facets:
facet_index = elem - 1
facet_pixel_counts[camera_index, facet_index] = count
resize_and_save_color_buffer_to_png(color, 1024,
image + '_render.png')
resize_and_save_depth_buffer_to_png(depth, 1024,
image + '_depth.png')
# Compute a rectifying homography from the given camera and
# facet_index, using the camera parameters and facet position and
# normal. The homography will map the facet to a quad with upper
# right corner at (0,0), and maximum length max_side_length.
def rectifying_homography(self, camera, facet_index,
pixels_per_meter=3.33, max_side_length=256):
# Get the surface normal for the facet.
normal = self.tmesh.facets_normal[facet_index]
# Compute tangent and bitangent, i.e., u_axis and v_axis. If
# normal is pointing up or nearly up, then have tangent and
# bitangent pointing approximately north and east. Otherwise,
# tangent and bitangent are pointing up and sideways.
if 1.0 - np.abs(normal[2]) < 1e-3:
# Normal is approximately up.
u_axis = unit_projection_onto_plane(np.array([1.0, 0.0, 0.0]),
normal)
v_axis = np.cross(normal, u_axis)
else:
# Normal is sufficiently far from pointing up.
v_axis = unit_projection_onto_plane(np.array([0.0, 0.0, 1.0]),
normal)
u_axis = np.cross(v_axis, normal)
np.testing.assert_allclose(np.dot(u_axis, v_axis), 0.0, atol=1.0e-5)
np.testing.assert_allclose(np.dot(u_axis, normal), 0.0, atol=1.0e-5)
np.testing.assert_allclose(np.dot(v_axis, normal), 0.0, atol=1.0e-5)
basis = np.stack((u_axis, v_axis, normal))
# Project all of the facet vertices onto the basis.
vertices = self.tmesh.vertices[
self.tmesh.faces[self.tmesh.facets[facet_index]]]
vertices_shape = np.shape(vertices)
assert vertices_shape[2] == 3
vertices = np.reshape(vertices,
(vertices_shape[0] * vertices_shape[1], 3))
vertices = vertices - self.tmesh.facets_origin[facet_index]
projected_vertices = np.transpose(
np.dot(basis, np.transpose(vertices)))
# TODO(snavely): Check why such a large tolerance is needed
# here. Do we need to increase facet_tolerance in the trimesh
# code?
np.testing.assert_allclose(projected_vertices[:,2],
0.0, atol=1.0e-2)
# Compute a uv-bounding box.
uv_coords_on_plane = projected_vertices[:, 0:2]
uv_bbox_on_plane = np.stack((np.amin(uv_coords_on_plane, axis=0),
np.amax(uv_coords_on_plane, axis=0)))
# print uv_bbox_on_plane
# TODO: project uv_bbox_on_plane into image using camera.K and
# camera.ydown_pose (NOTE: camera.pose is the *inverse* of the
# usual pose, and also is in "y-up" (OpenGL-style)
# coordinates. camera.ydown_pose is the standard
# "computer-vision"-style mapping from world to camera
# coordinates.
# TODO: compute a homography that maps the projected bounding
# box to a small image anchored at the origin, and apply the
# homography to fill in that patch with rectified content.
# Given an assignment from facets to images, create a texture map.
# Returns a texture image and a list of uv-coordinates per vertex
# per face.
#
# Inputs:
# facet_assignments: array of length num_facets, containing
# string identifying image to be used for texturing.
#
# Outputs:
# image: texture atlas
# uv_coords: per-vertex per-face list of texture coordinates
def create_textures_from_facet_assignments(facet_assignments):
pass
# write texture coordinate to vertex
def texture_ply(self):
# drop the RGB properties, and add two new properties (u, v)
# vert_list = []
# for vert in self.vertices.data:
# vert = vert.tolist() # convert to tuple
# vertices_utm = np.reshape(self.vertices.data
vertices_utm = np.stack((self.vertices['x'],
self.vertices['y'],
self.vertices['z']), axis=1)
vertices_enu = self.reconstruction.utm_to_enu(vertices_utm)
# vert_list.append(xyz)
# vert_list.append(vert[0:3]+(u, v))
# vertices = np.array(vert_list,
# dtype=[('x', '<f4'), ('y', '<f4'), ('z', '<f4')])
# ('u', '<f4'), ('v', '<f4')])
# vert_el = PlyElement.describe(vertices, 'vertex',
# comments=['point coordinate, texture coordinate'])
# self.ply_textured = PlyData([vert_el, self.faces], text=True)
print 'ply_vertices:', vertices_enu[0:2,:]
renderer = pyrender.OffscreenRenderer(1000, 1000)
for image, camera in self.reconstruction.cameras.items():
print camera.project(vertices_enu[0,:])
test_camera = pyrender.PerspectiveCamera(yfov=np.pi / 3.0)
test_camera_pose = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 1000.0],
[0, 0, 0, 1]])
# self.scene.add(camera.pyrender_camera, camera.pose)
self.scene.add(test_camera, pose=test_camera_pose)
light = pyrender.SpotLight(color=np.ones(3),
intensity=3.0,
innerConeAngle=np.pi/16.0)
# self.scene.add(light, pose=camera.pose)
# self.scene.add(light, pose=test_camera_pose)
# renderer = pyrender.OffscreenRenderer(camera.width, camera.height)
color, depth = renderer.render(self.scene)
# png.from_array(color, 'RGB').save(image + '_render.png')
png.from_array(color, 'RGB').save('test_render.png')
# fname should not come with a file extension
def save_texture(self, fname):
# convert tiff to jpg
os.system('gdal_translate -ot Byte -of jpeg {} {}.jpg'.format(self.tiff.fpath, fname))
# remove the intermediate file
os.remove(fname + '.jpg.aux.xml')
# fname and texture_fname should not come with a file extension
def save_ply(self, fname, texture_fname):
name = texture_fname[texture_fname.rfind('/')+1:]
self.ply_textured.comments = ['TextureFile {}.jpg'.format(name), ] # add texture file into the comment
self.ply_textured.write('{}.ply'.format(fname))
TextureMapper.insert_uv_to_face('{}.ply'.format(fname))
def save(self, fname):
# convert tiff to jpg
os.system('gdal_translate -ot Byte -of jpeg {} {}.jpg'.format(self.tiff.fpath, fname))
# remove the intermediate file
os.remove(fname + '.jpg.aux.xml')
# save ply
name = fname[fname.rfind('/')+1:]
self.ply_textured.comments = ['TextureFile {}.jpg'.format(name), ] # add texture file into the comment
self.ply_textured.write('{}.ply'.format(fname))
TextureMapper.insert_uv_to_face('{}.ply'.format(fname))
# write texture coordinate to face
@staticmethod
def insert_uv_to_face(ply_path):
ply = PlyData.read(ply_path)
uv_coord = ply['vertex'][['u', 'v']]
vert_cnt = ply['vertex'].count
with open(ply_path) as fp:
all_lines = fp.readlines()
modified = []
flag = False; cnt = 0
for line in all_lines:
line = line.strip()
if cnt < vert_cnt:
modified.append(line)
if line == 'property list uchar int vertex_indices':
modified.append('property list uchar float texcoord')
if flag:
cnt += 1
if line == 'end_header':
flag = True
if cnt > vert_cnt: # start modify faces
face = [int(x) for x in line.split(' ')]
face_vert_cnt = face[0]
line += ' {}'.format(face_vert_cnt * 2)
for i in range(1, face_vert_cnt + 1):
idx = face[i]
line += ' {} {}'.format(uv_coord[idx]['u'], uv_coord[idx]['v'])
modified.append(line)
with open(ply_path, 'w') as fp:
fp.writelines([line + '\n' for line in modified])
def test():
# Base path for the reconstruction (cameras and images) to be used
# in texture mapping.
recon_path = 'testdata'
# Location of the ply file to be texture mapped.
ply_path = 'testdata/aoi.ply'
texture_mapper = FullTextureMapper(ply_path, recon_path)
# texture_mapper.test_rendering()
# texture_mapper.test_rendering_on_real_camera()
texture_mapper.create_textures()
# texture_mapper.save('testdata/textured')
def deploy():
parser = argparse.ArgumentParser(description='texture-map a .ply to a .tif ')
parser.add_argument('mesh', help='path/to/.ply/file')
parser.add_argument('orthophoto', help='path/to/.tif/file')
parser.add_argument('filename', help='filename for the output files. will output '
'{filename}.ply and {filename}.jpg')
args = parser.parse_args()
texture_mapper = TextureMapper(args.mesh, args.orthophoto)
texture_mapper.save(args.filename)
if __name__ == '__main__':
test()
# deploy()