-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_coco_pose_estimation.py
277 lines (216 loc) · 10.3 KB
/
train_coco_pose_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import cv2
import copy
import json
import glob
import random
import argparse
import datetime
import numpy as np
import multiprocessing
from pycocotools.coco import COCO
import chainer
from chainer import cuda, training, reporter, function
from chainer.training import StandardUpdater, extensions
from chainer import serializers, optimizers, functions as F
from entity import params
from coco_data_loader import CocoDataLoader
from models import CocoPoseNet
class GradientScaling(object):
name = 'GradientScaling'
def __init__(self, layer_names, scale):
self.layer_names = layer_names
self.scale = scale
def __call__(self, opt):
for layer_name in self.layer_names:
for param in opt.target[layer_name].params(False):
grad = param.grad
with cuda.get_device_from_array(grad):
grad *= self.scale
def compute_loss(imgs, pafs_ys, heatmaps_ys, pafs_t, heatmaps_t, ignore_mask):
heatmap_loss_log = []
paf_loss_log = []
total_loss = 0
paf_masks = ignore_mask[:, None].repeat(pafs_t.shape[1], axis=1)
heatmap_masks = ignore_mask[:, None].repeat(heatmaps_t.shape[1], axis=1)
# compute loss on each stage
for pafs_y, heatmaps_y in zip(pafs_ys, heatmaps_ys):
stage_pafs_t = pafs_t.copy()
stage_heatmaps_t = heatmaps_t.copy()
stage_paf_masks = paf_masks.copy()
stage_heatmap_masks = heatmap_masks.copy()
if pafs_y.shape != stage_pafs_t.shape:
stage_pafs_t = F.resize_images(stage_pafs_t, pafs_y.shape[2:]).data
stage_heatmaps_t = F.resize_images(stage_heatmaps_t, pafs_y.shape[2:]).data
stage_paf_masks = F.resize_images(stage_paf_masks.astype('f'), pafs_y.shape[2:]).data > 0
stage_heatmap_masks = F.resize_images(stage_heatmap_masks.astype('f'), pafs_y.shape[2:]).data > 0
stage_pafs_t[stage_paf_masks == True] = pafs_y.data[stage_paf_masks == True]
stage_heatmaps_t[stage_heatmap_masks == True] = heatmaps_y.data[stage_heatmap_masks == True]
pafs_loss = F.mean_squared_error(pafs_y, stage_pafs_t)
heatmaps_loss = F.mean_squared_error(heatmaps_y, stage_heatmaps_t)
total_loss += pafs_loss + heatmaps_loss
paf_loss_log.append(float(cuda.to_cpu(pafs_loss.data)))
heatmap_loss_log.append(float(cuda.to_cpu(heatmaps_loss.data)))
return total_loss, paf_loss_log, heatmap_loss_log
def preprocess(imgs):
xp = cuda.get_array_module(imgs)
x_data = imgs.astype('f')
x_data /= 255
x_data -= 0.5
x_data = x_data.transpose(0, 3, 1, 2)
return x_data
class Updater(StandardUpdater):
def __init__(self, iterator, model, optimizer, device=None):
super(Updater, self).__init__(iterator, optimizer, device=device)
def update_core(self):
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')
# Update base network parameters
if self.iteration == 2000:
if args.arch == 'posenet':
layer_names = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1',
'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2']
for layer_name in layer_names:
optimizer.target[layer_name].enable_update()
if 100000 <= self.iteration < 200000:
optimizer.alpha = 1e-5
elif 200000 <= self.iteration:
optimizer.alpha = 1e-6
batch = train_iter.next()
imgs, pafs, heatmaps, ignore_mask = self.converter(batch, self.device)
x_data = preprocess(imgs)
pafs_ys, heatmaps_ys = optimizer.target(x_data)
loss, paf_loss_log, heatmap_loss_log = compute_loss(
imgs, pafs_ys, heatmaps_ys, pafs, heatmaps, ignore_mask)
reporter.report({
'main/loss': loss,
'main/paf': sum(paf_loss_log),
'main/heat': sum(heatmap_loss_log),
})
optimizer.target.cleargrads()
loss.backward()
optimizer.update()
class Validator(extensions.Evaluator):
def __init__(self, iterator, model, device=None):
super(Validator, self).__init__(iterator, model, device=device)
self.iterator = iterator
def evaluate(self):
val_iter = self.get_iterator('main')
model = self.get_target('main')
it = copy.copy(val_iter)
summary = reporter.DictSummary()
res = []
for i, batch in enumerate(it):
observation = {}
with reporter.report_scope(observation):
imgs, pafs, heatmaps, ignore_mask = self.converter(batch, self.device)
with function.no_backprop_mode():
x_data = preprocess(imgs)
pafs_ys, heatmaps_ys = model(x_data)
loss, paf_loss_log, heatmap_loss_log = compute_loss(
imgs, pafs_ys, heatmaps_ys, pafs, heatmaps, ignore_mask)
observation['val/loss'] = cuda.to_cpu(loss.data)
observation['val/paf'] = sum(paf_loss_log)
observation['val/heat'] = sum(heatmap_loss_log)
summary.add(observation)
return summary.compute_mean()
def parse_args():
parser = argparse.ArgumentParser(description='Train pose estimation')
parser.add_argument('--arch', '-a', choices=params['archs'].keys(), default='posenet',
help='Model architecture')
parser.add_argument('--batchsize', '-B', type=int, default=10,
help='Training minibatch size')
parser.add_argument('--valbatchsize', '-b', type=int, default=4,
help='Validation minibatch size')
parser.add_argument('--val_samples', type=int, default=100,
help='Number of validation samples')
parser.add_argument('--iteration', '-i', type=int, default=300000,
help='Number of iterations to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU')
parser.add_argument('--initmodel',
help='Initialize the model from given file')
parser.add_argument('--loaderjob', '-j', type=int,
help='Number of parallel data loading processes')
parser.add_argument('--resume', '-r', default='',
help='Initialize the trainer from given file')
parser.add_argument('--out', '-o', default='result/test',
help='Output directory')
parser.add_argument('--test', action='store_true')
parser.set_defaults(test=False)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
# Prepare model
model = params['archs'][args.arch]()
if args.arch == 'posenet':
CocoPoseNet.copy_vgg_params(model)
if args.initmodel:
print('Load model from', args.initmodel)
chainer.serializers.load_npz(args.initmodel, model)
# Set up GPU
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
# Set up an optimizer
# optimizer = optimizers.MomentumSGD(lr=1e-3, momentum=0.9)
optimizer = optimizers.Adam(alpha=1e-4, beta1=0.9, beta2=0.999, eps=1e-08)
optimizer.setup(model)
# optimizer.add_hook(chainer.optimizer.WeightDecay(1e-5))
if args.arch == 'posenet':
layer_names = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1',
'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2',
'conv4_3_CPM', 'conv4_4_CPM']
optimizer.add_hook(GradientScaling(layer_names, 1/4))
# Fix base network parameters
if not args.resume:
if args.arch == 'posenet':
layer_names = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1',
'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2']
for layer_name in layer_names:
model[layer_name].disable_update()
# Load datasets
coco_train = COCO(os.path.join(params['coco_dir'], 'annotations/person_keypoints_train2017.json'))
coco_val = COCO(os.path.join(params['coco_dir'], 'annotations/person_keypoints_val2017.json'))
train_loader = CocoDataLoader(coco_train, model.insize, mode='train')
val_loader = CocoDataLoader(coco_val, model.insize, mode='val', n_samples=args.val_samples)
# Set up iterators
if args.loaderjob:
multiprocessing.set_start_method('spawn') # to avoid MultiprocessIterator's bug
train_iter = chainer.iterators.MultiprocessIterator(
train_loader, args.batchsize, n_processes=args.loaderjob)
val_iter = chainer.iterators.MultiprocessIterator(
val_loader, args.valbatchsize, n_processes=args.loaderjob, repeat=False, shuffle=False)
else:
train_iter = chainer.iterators.SerialIterator(train_loader, args.batchsize)
val_iter = chainer.iterators.SerialIterator(
val_loader, args.valbatchsize, repeat=False, shuffle=False)
# Set up a trainer
updater = Updater(train_iter, model, optimizer, device=args.gpu)
trainer = training.Trainer(updater, (args.iteration, 'iteration'), args.out)
val_interval = (10 if args.test else 1000), 'iteration'
log_interval = (1 if args.test else 20), 'iteration'
trainer.extend(Validator(val_iter, model, device=args.gpu),
trigger=val_interval)
trainer.extend(extensions.dump_graph('main/loss'))
trainer.extend(extensions.snapshot(), trigger=val_interval)
trainer.extend(extensions.snapshot_object(
model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'epoch', 'iteration', 'main/loss', 'val/loss', 'main/paf', 'val/paf',
'main/heat', 'val/heat',
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=1))
if args.resume:
chainer.serializers.load_npz(args.resume, trainer)
# Save training parameters
if not os.path.exists(args.out):
os.makedirs(args.out)
txt = '@{}'.format(datetime.datetime.now().strftime('%y%m%d_%H%M'))
with open(os.path.join(args.out, txt), 'w') as f:
pass
with open(os.path.join(args.out, 'params.json'), 'w') as f:
json.dump(vars(args), f)
trainer.run()