forked from flags/Reactor-3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumbers.py
198 lines (142 loc) · 5.11 KB
/
numbers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from globals import *
from math import *
import pathfinding
import render_los
import logging
import random
import numpy
import tiles
import time
import maps
def clip(number,start,end):
"""Returns `number`, but makes sure it's in the range of [start..end]"""
return max(start, min(number, end))
def roll(dice, sides):
return sum([random.choice(range(sides))+1 for d in range(dice)])
def lerp(n1, n2, t):
return n1 + (n2-n1) * t
def distance(pos1, pos2, old=False):
if old:
return abs(pos1[0]-pos2[0])+abs(pos1[1]-pos2[1])
x_dist = abs(pos1[0]-pos2[0])
y_dist = abs(pos1[1]-pos2[1])
if x_dist > y_dist:
return y_dist + (x_dist-y_dist)
else:
return x_dist + (y_dist-x_dist)
def velocity(direction, speed):
rad = direction*(pi/180)
velocity = numpy.multiply(numpy.array([cos(rad), sin(rad)]), speed)
return [velocity[0], -velocity[1], 0]
def lerp_velocity(velocity1, velocity2, interp):
return [lerp(velocity1[0], velocity2[0], interp),
lerp(velocity1[1], velocity2[1], interp),
lerp(velocity1[2], velocity2[2], interp)]
def get_surface_area(structure):
if 'attaches_to' in structure:
return structure['size']*len(structure['attaches_to'])
return structure['size']
def direction_to(pos1, pos2):
theta = atan2((pos1[1]-pos2[1]), -(pos1[0]-pos2[0]))
if theta < 0:
theta += 2 * pi
return theta * (180/pi)
def create_flee_map(dijkstra):
for _x in range(dijkstra['x_range'][0],dijkstra['x_range'][1]):
for _y in range(dijkstra['y_range'][0],dijkstra['y_range'][1]):
if dijkstra['map'][_y-dijkstra['y_range'][0],_x-dijkstra['x_range'][0]]==9999:
continue
dijkstra['map'][_y-dijkstra['y_range'][0],_x-dijkstra['x_range'][0]] *= -1.25
def calculate_dijkstra_map(dijkstra):
_map = dijkstra['map']
_min_x = dijkstra['x_range'][0]
_max_x = dijkstra['x_range'][1]
_min_y = dijkstra['y_range'][0]
_max_y = dijkstra['y_range'][1]
_target_positions = [tuple(target['position']) for target in dijkstra['targets']]
_i = 0
while 1==1:
_i += 1
_orig_map = _map.copy()
for _x in range(_min_x,_max_x):
for _y in range(_min_y,_max_y):
if (_x,_y) in _target_positions or _orig_map[_y-_min_y,_x-_min_x] == -1:
continue
_lowest_score = 9000
for x1 in range(-1,2):
x = _x+x1
if 0>x or x>=_max_x:
continue
for y1 in range(-1,2):
#if (x1,y1) in [(-1,-1),(1,-1),(-1,1),(1,1)]:
# continue
y = _y+y1
if 0>y or y>=_max_y or (x1,y1) == (0,0) or _orig_map[y-_min_y,x-_min_x] == -1:
continue
if _orig_map[y-_min_y,x-_min_x] < _lowest_score:
_lowest_score = _orig_map[y-_min_y,x-_min_x]
if _lowest_score>=0:
if _orig_map[_y-_min_y,_x-_min_x]-_lowest_score>=2:
_map[_y-_min_y,_x-_min_x] = _lowest_score+1
if numpy.array_equal(_map,_orig_map):
break
def _create_dijkstra_map(center,source_map,targets,size=(50,50),flee=False,**kvargs):
if not targets:
raise Exception('No targets passed to create_dijkstra_map()')
_target_positions = [tuple(target['position']) for target in targets]
_min_x = clip(center[0]-(size[0]),0,MAP_SIZE[0])
_max_x = clip(center[0]+(size[0]),0,MAP_SIZE[0])
_min_y = clip(center[1]-(size[1]),0,MAP_SIZE[1])
_max_y = clip(center[1]+(size[1]),0,MAP_SIZE[1])
_stime = time.time()
_map = numpy.ones((_max_y,_max_x))
_orig_map = None
for target in targets:
_map[target['position'][1]-_min_y,target['position'][0]-_min_x] = 0#target['score']
_map*=30
for x in range(_min_x,_max_x):
for y in range(_min_y,_max_y):
if source_map[x][y][center[2]+1]:
if flee:
_map[y-_min_y,x-_min_x] = 1
else:
_map[y-_min_y,x-_min_x] = -1
continue
_dijkstra = {'map': _map,
'x_range': (_min_x,_max_x),
'y_range': (_min_y,_max_y),
'targets': targets}
calculate_dijkstra_map(_dijkstra)
if flee:
create_flee_map(_dijkstra)
#_create_dijkstra_map(center,source_map,targets,size=size)
calculate_dijkstra_map(_dijkstra)
logging.info('Dijkstra map took: %s, size %s,%s' % (str(time.time()-_stime),(_max_x-_min_x),(_max_y-_min_y)))
print 'Dijkstra map took: %s, size %s,%s, %s' % (str(time.time()-_stime),(_max_x-_min_x),(_max_y-_min_y),0)
return _dijkstra
def draw_dijkstra(dijkstra,path):
for _y in range(dijkstra['y_range'][0],dijkstra['y_range'][1]):
y = _y-dijkstra['y_range'][0]
for _x in range(dijkstra['x_range'][0],dijkstra['x_range'][1]):
x = _x-dijkstra['x_range'][0]
#if _x == 20:
# continue
#print _x,dijkstra['x_range']#,_y#,dijkstra['x_range'][1],dijkstra['y_range'][1]
_score = clip(int(abs(dijkstra['map'][y,x])),0,9)
#_score = int(dijkstra['map'][y,x])
if (_x,_y,0) in path:
_score = 'O '
elif _score == -1:
_score = 'x '
else:
_score = '. '
#_score = _score
print '%s' % _score,
print
def create_dijkstra_map(center,source_map,targets,flee=False):
_farthest_distance = 0
for target in targets:
_dist = distance(center,target['position'])
if _dist>_farthest_distance:
_farthest_distance = _dist+1
return _create_dijkstra_map(center,source_map,targets,size=(_farthest_distance,_farthest_distance),flee=flee)