-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvGRU_lessGate_old.py
80 lines (67 loc) · 3.46 KB
/
ConvGRU_lessGate_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
from torch.autograd import Variable
import sys
sys.path.append('/export/home/choi574/git_libs/misc/')
import misc
class ConvGRUCell(nn.Module):
def __init__(self, input_shape, hidden_c, kernel_shape, active_fn='tanh', pad_mod='replicate', GN=32):
"""
input_shape: (channel, h, w)
hidden_c: the number of hidden channel.
kernel_shape: (h, w)
avtive_fn: 'tanh' or 'relu'
"""
super().__init__()
self.active_fn = active_fn
self.relu = nn.ReLU()
self.input_c, self.input_h, self.input_w = input_shape
self.hidden_c = hidden_c
self.kernel_h, self.kernel_w = kernel_shape
self.padding_same_h = self.kernel_h // 2
self.padding_same_w = self.kernel_w // 2
# Initial states for GRU
self.init_hidden = nn.Parameter(torch.randn(1, self.hidden_c, self.input_h, self.input_w), requires_grad=True)
self.gate_conv = nn.Conv2d(in_channels=self.input_c + self.hidden_c,
out_channels=2, #self.hidden_c * 2, ## Changed for less GATE
kernel_size=(self.kernel_h, self.kernel_w),
stride=1,
padding=(self.padding_same_h, self.padding_same_w),
padding_mode=pad_mod)
self.norm = nn.GroupNorm(GN*2, self.hidden_c*2)
self.gate_channel = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
misc.Flatten(),
nn.Linear(self.input_c + self.hidden_c, 64),
nn.ReLU(),
nn.Linear(64, self.hidden_c*2))
self.in_conv = nn.Conv2d(in_channels=self.input_c + self.hidden_c,
out_channels=self.hidden_c,
kernel_size=(self.kernel_h, self.kernel_w),
stride=1,
padding=(self.padding_same_h, self.padding_same_w),
padding_mode=pad_mod) # 20200918 modified.
self.norm_in = nn.GroupNorm(GN, self.hidden_c)
def forward(self, input_cur, state_prev):
input_concat = torch.cat([input_cur, state_prev], dim=1) # (batch, c, h, w)
#gates = self.norm(self.gate_conv(input_concat))
gates = self.gate_conv(input_concat) # (b, 2, h, w)
gate_update, gate_reset = gates.chunk(2, 1) # (b, 1, h, w)
gate_update = torch.sigmoid(gate_update)
gate_reset = torch.sigmoid(gate_reset)
gates_c = self.gate_channel(input_concat) # (b, 2*hidden_c)
gate_update_c, gate_reset_c = gates_c.chunk(2, 1) # (b, hidden_c)
gate_update_c = torch.sigmoid(gate_update_c).unsqueeze(-1).unsqueeze(-1) # (b, hidden_c, 1, 1)
gate_reset_c = torch.sigmoid(gate_reset_c).unsqueeze(-1).unsqueeze(-1) # (b, hidden_c, 1, 1)
#input_concat_reset = torch.cat([input_cur, state_prev*gate_reset*gate_reset_c], dim=1)
input_concat_reset = torch.cat([input_cur, state_prev*gate_reset], dim=1)
in_state = self.norm_in(self.in_conv(input_concat_reset))
if self.active_fn == 'tanh':
in_state = torch.tanh(in_state)
elif self.active_fn == 'relu':
in_state = self.relu(in_state)
else:
print('error ConvGRU activation function not defined')
state_cur = state_prev * (1 - gate_update) * (1-gate_update_c) + in_state * gate_update * gate_update_c
#state_cur = state_prev * (1 - gate_update*gate_update_c) + in_state * (gate_update * gate_update_c)
return state_cur