-
Notifications
You must be signed in to change notification settings - Fork 20
/
makemeta.py
483 lines (415 loc) · 21.9 KB
/
makemeta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
'''
Makes a metadata file for all the variables in the tables contained in the html
document specified. The metadata is saved as an xml file formatted for easy
manual editing.
It requires the Beautiful Soup and requests libraries for Python:
http://www.crummy.com/software/BeautifulSoup
http://docs.python-requests.org/en/latest/index.html
Installation of both packages typically just require (from command line):
easy_install beautifulsoup4
easy_install requests
The HTML parser can be set with the -parser option, and chose among the ones
listed below:
http://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
The default is html.parser, the other ones (html5lib, lxml) need to be installed
separately.
@copyright: Fathom Information Design 2014
'''
import sys, os, csv, codecs, re
import requests
from bs4 import BeautifulSoup
from xml.dom.minidom import parseString
import xml.etree.ElementTree as ET
def load_components():
ifile = open('components', 'r')
components = []
for line in ifile.readlines():
line = line.strip()
if line == "" or line[0] == "#": continue
parts = line.split()
if len(parts) == 2:
comp_name = parts[0]
components.append(comp_name)
ifile.close()
return components
def is_number(s):
try:
float(s)
return True
except ValueError:
return False
def replace_xml_specials(str):
# http://xml.silmaril.ie/specials.html
str = str.replace("<", "<")
str = str.replace("&", "&")
return str
def clean_xml_string(str):
# Removing EOL characters
str = str.replace("\r", "").replace("\n", "")
# Removing less/greater signs to avoid problems with XML
str = str.replace("<=", "less or equal than").replace(">=", "greater or equal than")
str = str.replace("<", "less than ").replace(">", "greater than")
# Likewise for the '&' character
str = str.replace("&", "and")
# Removing the ":" and ";" characters, used to separate the data values
str = str.replace(";", "").replace(":", "")
return str
def var_inside_file(datafile, name):
csv_file = open(datafile, 'r', encoding='latin1')
csv_reader = csv.reader(csv_file, delimiter=',', quotechar='"')
title_row = [x.upper().replace(".", "_") for x in next(csv_reader)]
csv_file.close()
return name in title_row
def int_or_float(datafile, name):
file = open(datafile, 'r', encoding='latin1')
reader = csv.reader(file, delimiter=',', quotechar='"')
# The replace is needed because the variable names in the source csv files
# use "." instead of "_" even though the variable name in the codebook has
# "_"
title = [x.upper().replace(".", "_") for x in next(reader)]
if not name in title:
file.close()
return None
col = title.index(name)
type = "integer"
for row in reader:
dat = row[col]
try:
value = float(dat)
if not value.is_integer():
type = "float"
except ValueError:
# invalid numeric value, this will be catched when checking metadata
continue
file.close()
return type
def get_variable_type_and_range(short_name, full_name, table, datafile):
var_type = None
var_range = None
if not table.tbody:
print(" Warning: codebook of variable " + short_name + " seems malformed")
return [var_type, var_range]
val_list = table.tbody.find_all("tr")
for val in val_list:
td_list = val.find_all("td")
val_code = td_list[0].text
val_desc = td_list[1].text
if val_desc == "Range of Values" or (is_number(val_code) and val_desc == val_code and var_type == None):
if -1 < val_code.find(" to "):
var_range = val_code.replace(" to ", ",")
else:
# Single value?
var_range = val_code + "," + val_code
print(" Warning: range of numeric variable " + short_name + " has a single value " + val_code)
if var_range == "00:00,23:59" or -1 < full_name.find("HH:MM") or -1 < full_name.find("HHMM"):
var_type = "time"
else:
if -1 < var_range.find("."):
# If the range contains a decimal point, we know is a float value
var_type = "float"
else:
# Otherwise we need to go through the data
# Send to a function that checks for integer or float which returns "integer" or "float"
# then var_type = the returned value
if os.path.exists(datafile):
var_type = int_or_float(datafile, short_name)
else:
# Data file doesn't exist, variable won't be added because its type
# will remain undefined.
break
elif val_desc == "Value was recorded" or (var_type == None and (val_desc.find("<") == 0 or val_desc.isdigit())):
var_type = "recorded"
var_range = ""
break
else:
if var_type == None:
var_type = "category"
if val_code != "." and val_desc != "Missing":
if var_range == None: var_range = ""
val_code = replace_xml_specials(val_code)
val_desc = clean_xml_string(val_desc)
if var_type != "integer":
if var_range != "" : var_range += ";"
var_range += val_code + ":" + val_desc
else:
# Expanding the range when there is an additional cap value
expand = 0
try:
endpoints = [int(x) for x in var_range.split(",")]
except ValueError:
endpoints = []
if len(endpoints) == 2:
val = int(val_code)
if val == endpoints[1] + 1:
endpoints[1] = val
expand = 1
if val == endpoints[0] - 1:
endpoints[0] = val
expand = 1
if expand:
var_range = str(endpoints[0]) + "," + str(endpoints[1])
else:
var_range += ";" + val_code + ":" + val_desc
return [var_type, var_range]
def write_xml_line(line):
xml_file.write(line + '\n')
xml_strings.append(line + '\n')
def strip_units(name):
# Regular expression sear to identify a substring of the form
# "(mL/g), i.e.: measurement units
match = re.search(r'\([\w]*./[\w+\s\w+]*\)', name)
if match:
p0 = match.start()
p1 = match.end()
return name[0:match.start()] + name[match.end():len(name)]
else:
return None
def repeated_var(newname, oldnames):
newnameNU = strip_units(str(newname))
if not newnameNU: return None
for oldname in oldnames:
oldnameNU = strip_units(oldname[1])
if newnameNU == oldnameNU:
return oldname
return None
def get_weight_vars(filename):
vars = []
tree = ET.parse(filename)
root = tree.getroot()
for table in root:
if (table.tag == "table"):
for var in table:
for child in var:
if child.tag == "short":
vars.append(child.text)
return vars
data_cycle = sys.argv[1]
data_component = sys.argv[2]
data_folder = sys.argv[3]
xml_filename = sys.argv[4]
base_url = "https://wwwn.cdc.gov"
html_parser = "html.parser"
print_detail_info = 1
for i in range(5, len(sys.argv)):
if sys.argv[i] == "-parser":
html_parser = sys.argv[i + 1]
elif sys.argv[i] == "-nodetails":
print_detail_info = 0
data_components = load_components()
sample_weights = ["WTINT2YR", "WTMEC2YR", "WTINT4YR", "WTMEC4YR"]
xml_folder = os.path.split(xml_filename)[0]
weights_file = os.path.join(xml_folder, "weights.xml")
if os.path.exists(weights_file):
weight_vars = get_weight_vars(weights_file)
else:
weight_vars = []
if not data_component in data_components:
sys.stderr.write("Error: component must be one of the following: Demographics, Dietary, Examination, Laboratory or Questionnaire\n")
sys.exit(1)
begin_year = data_cycle.split("-")[0]
request_url = "http://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=" + data_component + "&CycleBeginYear=" + begin_year
html_doc = None
for i in range(0, 5):
try:
html_doc = requests.get(request_url)
break;
except:
html_doc = None
if i < 5 - 1: print(" Warning: Could not open " + request_url + ", will try again")
if html_doc == None:
sys.stderr.write("Error: Failed opening " + request_url + " after 5 attempts\n")
sys.exit(1)
html_soup = BeautifulSoup(html_doc.text, html_parser)
# Writing file in utf-8 because the input html files from
# NHANES website sometimes have characters output the ASCII range.
xml_file = codecs.open(xml_filename, "w", "utf-8")
xml_strings = []
write_xml_line('<?xml version="1.0" encoding="utf-8" ?>')
write_xml_line('<data name="' + data_component + '">')
# Getting all the codebooks in listed in the datapage
all_vars = []
for table in html_soup.find_all('table'):
links = table.find_all('a')
for link in links:
codebook_url = link['href']
path, ext = os.path.splitext(codebook_url)
if ext.lower() == ".htm" or ext.lower() == ".html":
codebook_url = base_url + codebook_url
codebook_doc = None
for i in range(0, 5):
try:
codebook_doc = requests.get(codebook_url)
break;
except:
codebook_doc = None
if i < 5 - 1: print(" Warning: Could not open " + codebook_url + ", will try again")
if codebook_doc == None:
sys.stderr.write("Error: Failed opening " + codebook_url + " after 5 attempts\n")
sys.exit(1)
print("Extracting metadata from codebook " + codebook_url + "...")
codebook_soup = BeautifulSoup(codebook_doc.text, html_parser)
header = codebook_soup.find("div", {"id": "PageHeader"})
if header == None: continue
header_table_name = header.find("h3")
table_name = header_table_name.contents[0].strip().replace("&", "and")
header_data_file = header.find("h4")
data_file = header_data_file.contents[0].split(":")[1].strip()
data_filename = os.path.splitext(data_file)[0].upper()
csv_data_filepath = os.path.abspath(os.path.join(data_folder, data_filename + ".csv"))
if not os.path.exists(csv_data_filepath):
print(" Warning: data file " + csv_data_filepath + " missing, skipping codebook " + codebook_url)
continue
csv_data_relpath = os.path.join(data_folder, data_filename + ".csv")
codebook = codebook_soup.find("div", {"id": "Codebook"})
if codebook == None: continue
variables = codebook.find_all("div", {"class": "pagebreak"})
write_xml_line(' <table include="yes" name="' + str(table_name) + '">')
has_seqn = False
xml_lines = []
table_vars = []
weight_var = ""
weighted_by = ""
if weight_vars:
# Default weight variables
if (data_component == "Demographics" or data_component == "Questionnaire"):
if "WTINT2YR" in weight_vars: weighted_by = "<weight>WTINT2YR</weight>"
elif "WTMEC2YR" in weight_vars:
weighted_by = "<weight>WTMEC2YR</weight>"
for var in variables:
var_info = var.find("dl")
if not var_info:
print(" Warning: codebook for '" + str(var) + "' seems malformed, skipping")
continue
var_table = var.find("table")
info = var_info.find_all("dd")
if 0 < len(info):
short_name = clean_xml_string(info[0].contents[0]).upper()
else:
print(" Warning: variable without short name, skipping")
continue
short_name = short_name.strip()
if short_name == "":
print(" Warning: variable without short name, skipping")
continue
if short_name != "SEQN" and short_name in all_vars:
print(" Warning: variable " + short_name + " duplicated, skipping")
continue
if not var_inside_file(csv_data_filepath, short_name):
print(" Warning: variable " + short_name + " is not included in the source datafile " + csv_data_filepath + ", skipping")
continue
full_name = ""
if 1 < len(info) and 0 < len(info[1].contents):
# Trying to get full name from SAS label
full_name = clean_xml_string(info[1].contents[0])
full_name = full_name.strip()
if full_name == "":
print(" Warning: variable " + short_name + " doesn't have full name, skipping")
continue
if var_table == None and short_name != "SEQN":
print(" Warning: variable " + full_name + " (" + short_name + ") doesn't have a value table, skipping")
continue
include_var = '"yes"'
weight_var = '"no"'
fnl = full_name.lower()
if -1 < fnl.find("weight") and (-1 < fnl.find("sample") or -1 < fnl.find("environmental")):
weight_var = '"yes"'
if -1 < fnl.find("weight") and (-1 < fnl.find("interview") or -1 < fnl.find("mec") or -1 < fnl.find("sample") or -1 < fnl.find("environmental")):
name_ext = os.path.split(csv_data_relpath)[1]
tname = name_ext.split(".")[0]
weight_name = short_name + "." + tname
if weight_vars and weight_name in weight_vars and data_component != "Demographics":
if data_component == "Dietary":
# Need special handling for dietary weights (the first and second day
# tables seem to contain the two weights)
tnl = table_name.lower()
if -1 < tnl.find("first day") and -1 < weight_name.find("WTDRD1"):
weighted_by = "<weight>WTDRD1." + tname + "</weight>"
if -1 < tnl.find("second day") and -1 < weight_name.find("WTDR2D"):
weighted_by = "<weight>WTDR2D." + tname + "</weight>"
# Don't do anything otherwise, WTMEC2YR will be used.
elif -1 < short_name.find("2YR"):
weighted_by = "<weight>" + weight_name + "</weight>"
continue
# PSU and stratum variables are not included
if short_name == "SDMVPSU" or short_name == "SDMVSTRA":
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is not included because is a PSU or stratum variable")
include_var = '"no"'
# Comment variables are not included
if -1 < fnl.find("comment"):
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is not included because it seems to be a comment variable")
include_var = '"no"'
# Status code variables are not included
if -1 < fnl.find("status code"):
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is not included because it seems to be a code variable")
include_var = '"no"'
# Flag variables are not included
if -1 < fnl.find("imputation flag") or -1 < fnl.find("mode flag") or -1 < fnl.find(" flag "):
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is not included because it seems to be a flag variable")
include_var = '"no"'
# Replicate numbers are not included
if -1 < fnl.find("replicate number"):
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is not included because it seems to be a replication number variable")
include_var = '"no"'
# Food or modification codes are not included
if -1 < fnl.find("food code") or -1 < fnl.find("modification code"):
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is not included because it seems to be a food or modification code variable")
include_var = '"no"'
# Repeated variables within the same table (i.e.: same quantity expressed in different units)
# are not included. It seems that another, simpler way of finding unit duplicates is by comparing
# the short name, because the duplicated variables seem always to be in SI units, which is indicated
# by appending "SI" to the variable name, for example: LBDGLTSI and LBDGLT.
repvar = repeated_var(fnl, table_vars)
if repvar:
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is not included because it seems to be a duplicate of " + repvar[1] + " (" + repvar[0] + ")")
include_var = '"no"'
if short_name == "SEQN":
has_seqn = True
var_type = "integer"
var_range = "1,1000000"
if data_component != "Demographics":
# SEQN only appears in the demographics metadata
continue
else:
(var_type, var_range) = get_variable_type_and_range(short_name, full_name, var_table, csv_data_filepath)
# Check for single value ranges, except it the variable is SDDSRVYR
# (Data Release Number) which it is used to aggregate cycles.
if var_range and short_name != "SDDSRVYR":
# Check for singled-value variables
single_valued = False
if var_type == "integer" or var_type == "float":
values = var_range.split(",")
single_valued = len(values) < 2 or values[0] == values[1]
elif var_type == "category":
values = var_range.split(";")
single_valued = len(values) < 2
if single_valued:
print(" Warning: Variable " + full_name + " (" + short_name + ") is single-valued, skipping")
include_var = '"no"'
if include_var == '"yes"':
table_vars.append([short_name, fnl])
if var_type != None and var_range != None and var_type != "time" and var_type != "recorded":
if short_name != "SEQN": all_vars.append(short_name)
xml_lines.append(' <var include=' + include_var + ' weight=' + weight_var + '><short>' + short_name + '</short><full>' + full_name + '</full><type>' + var_type + '</type><range>' + var_range + '</range>' + weighted_by + '<datafile>' + csv_data_relpath + '</datafile></var>')
else:
if var_type == "time":
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is a time variable, skipping because time variables are not yet supported")
elif var_type == "recorded":
if print_detail_info: print(" Warning: Variable " + full_name + " (" + short_name + ") is a recorded variable, skipping because recorded variables are not yet supported")
else:
print(" Warning: Cannot find type/range for variable " + full_name + " (" + short_name + ")")
if has_seqn:
for line in xml_lines:
write_xml_line(line)
else:
print(" Warning: SEQN variable not found in table " + str(table_name) + ", skipping variables " + ",".join([nam[0] for nam in table_vars]))
write_xml_line(' </table>')
write_xml_line('</data>')
xml_file.close()
# For XML validation.
try:
doc = parseString(''.join(xml_strings))
doc.toxml()
print("Done.")
except:
sys.stderr.write("XML validation error:\n")
raise