forked from ethanhe42/u-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
189 lines (154 loc) · 5.48 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from __future__ import print_function
import os
import numpy as np
import cv2
import pandas as pd
import sys
import os
import os.path
import string
import scipy.io
import pdb
import PIL.Image as Image
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.font_manager import FontProperties
import skimage
import skimage.measure
data_path = 'raw/'
save_path = '/mnt/data1/yihuihe/mnc_small/'
image_rows = 420
image_cols = 580
def create_train_data():
train_data_path = os.path.join(data_path, 'train')
images = os.listdir(train_data_path)
total = len(images) / 2
imgs = np.ndarray((total, 1, image_rows, image_cols), dtype=np.uint8)
imgs_mask = np.ndarray((total, 1, image_rows, image_cols), dtype=np.uint8)
i = 0
print('-'*30)
print('Creating training images...')
print('-'*30)
for image_name in images:
if 'mask' in image_name:
continue
image_mask_name = image_name.split('.')[0] + '_mask.tif'
img = cv2.imread(os.path.join(train_data_path, image_name), cv2.IMREAD_GRAYSCALE)
img_mask = cv2.imread(os.path.join(train_data_path, image_mask_name), cv2.IMREAD_GRAYSCALE)
img = np.array([img])
img_mask = np.array([img_mask])
imgs[i] = img
imgs_mask[i] = img_mask
if i % 100 == 0:
print('Done: {0}/{1} images'.format(i, total))
i += 1
print('Loading done.')
np.save('imgs_train.npy', imgs)
np.save('imgs_mask_train.npy', imgs_mask)
print('Saving to .npy files done.')
def load_train_data():
imgs_train = np.load('imgs_train.npy')
imgs_mask_train = np.load('imgs_mask_train.npy')
return imgs_train, imgs_mask_train
def preprocess(imgs, img_rows,img_cols):
imgs_p = np.ndarray((imgs.shape[0],imgs.shape[1],img_rows,img_cols),dtype=np.uint8)
for i in range(imgs.shape[0]):
imgs_p[i, 0 ] = cv2.resize(imgs[i,0],(img_cols,img_rows),interpolation=cv2.INTER_CUBIC)
return imgs_p
def detseg():
# out_rows=240
# out_cols=320
out_rows=160
out_cols=224
imgs_train = np.load('imgs_train.npy')
imgs_train=preprocess(imgs_train, out_rows,out_cols).astype(np.float32)
mean_image=imgs_train.mean(0)[np.newaxis,]
imgs_train -=mean_image
print(np.histogram(imgs_train))
std_image=imgs_train.std(0)[np.newaxis,]
imgs_train /=std_image
print(np.histogram(imgs_train))
imgs_mask_train = np.load('imgs_mask_train.npy')
imgs_mask_train=preprocess(imgs_mask_train, out_rows,out_cols)
imgs_mask_train[imgs_mask_train<=50]=False
imgs_mask_train[imgs_mask_train>50]=True
print(np.histogram(imgs_mask_train))
# if os.path.exists(save_path+'data.npy')==False:
np.save(save_path+'mean.npy',mean_image)
np.save(save_path+'std.npy',std_image)
np.save(save_path+'data.npy',imgs_train.astype(np.float32))
print('save data')
np.save(save_path+'mask.npy',imgs_mask_train.astype(np.bool))
print('save mask')
del imgs_train
bboxes=[]
masks=[]
acc_width=[]
acc_height=[]
max_width=0
for percent,label in enumerate(imgs_mask_train):
if percent % 100==0:
print(percent)
label=label[0]
CCMap,CCNum = skimage.measure.label(label,connectivity=1,background=0,return_num=True)
gt_boxes=[]
instance_masks=[]
for ins in range(CCNum):
foregroundIdx=CCMap==ins
# plt.imshow(foregroundIdx)
# plt.show()
area=np.sum(foregroundIdx)
if area<10:
CCMap[foregroundIdx]=-1
continue
idx_map=np.where(foregroundIdx==True)
ymin=idx_map[0].min()
ymax=idx_map[0].max()
xmin=idx_map[1].min()
xmax=idx_map[1].max()
max_width=foregroundIdx.shape[1]
acc_width.append(xmax-xmin)
acc_height.append(ymax-ymin)
# print(xmin,ymin,xmax,ymax)
instance_masks.append(label[ymin:ymax,xmin:xmax])
gt_boxes.append([xmin,ymin,xmax,ymax,1])
bboxes.append(gt_boxes)
masks.append(instance_masks)
print("xmax", max_width, max(acc_width))
H, xedges, yedges=np.histogram2d(acc_width,acc_height, bins=50)
plt.imshow(H, interpolation='nearest', origin='low',
extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
plt.show()
np.save(save_path+'roidb.npy',np.array(bboxes))
np.save(save_path+'maskdb.npy',np.array(masks))
def create_test_data():
train_data_path = os.path.join(data_path, 'test')
images = os.listdir(train_data_path)
total = len(images)
imgs = np.ndarray((total, 1, image_rows, image_cols), dtype=np.uint8)
imgs_id = np.ndarray((total, ), dtype=np.int32)
i = 0
print('-'*30)
print('Creating test images...')
print('-'*30)
for image_name in images:
img_id = int(image_name.split('.')[0])
img = cv2.imread(os.path.join(train_data_path, image_name), cv2.IMREAD_GRAYSCALE)
img = np.array([img])
imgs[i] = img
imgs_id[i] = img_id
if i % 100 == 0:
print('Done: {0}/{1} images'.format(i, total))
i += 1
print('Loading done.')
np.save('imgs_test.npy', imgs)
np.save('imgs_id_test.npy', imgs_id)
print('Saving to .npy files done.')
def load_test_data():
imgs_test = np.load('imgs_test.npy')
imgs_id = np.load('imgs_id_test.npy')
return imgs_test, imgs_id
if __name__ == '__main__':
# create_train_data()
# create_test_data()
detseg()