Skip to content

GapFill: gap filling functions for motion capture marker data

License

Notifications You must be signed in to change notification settings

mkjung99/gapfill

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GapFill

GapFill: A Python module of gap filling functions for motion capture marker data

Description

Collection of several functions for gap filling and recovering of motion capture marker data

Installation

GapFill can be installed from PyPI using pip on Python>=3.7.

pip install gapfill

Usage

Rows of ndarray values for marker coordinates should be filled with numpy.nan for occluded (blocked) frames.

import gapfill as gf

# numpy is required in order to provide necessary markers' coordinate values
import numpy as np

# 'fill_marker_gap_interp()' function will update the given ndarray by filling its gaps using bspline interpolation
# 'tgt_mkr_pos0': a 2D (n, 3) ndarray of a target marker position to fill the gaps
# 'n' is the total number of frames
tgt_mkr_pos0 = np.array((n, 3), dtype=np.float32)
# 'ret0': either True or False, True if there is any frame updated, False if there is no frame updated
# 'updated_frs_mask0': a boolean ndarray to indicate which frames are updated
ret0, updated_frs_mask0 = gf.fill_marker_gap_interp(tgt_mkr_pos0)

# 'fill_marker_gap_pattern()' function will update the given ndarray by filling its gaps using a donor marker
# 'tgt_mkr_pos1': a 2D (n, 3) ndarray of a target marker position to fill the gaps
# 'n' is the total number of frames
tgt_mkr_pos1 = np.array((n, 3), dtype=np.float32)
# 'dnr_mkr_pos': a 2D (n, 3) ndarray of a donor marker position
# 'n' is the total number of frames
dnr_mkr_pos = np.array((n, 3), dtype=np.float32)
# 'ret1': either True or False, True if there is any frame updated, False if there is no frame updated
# 'updated_frs_mask1': a boolean ndarray to indicate which frames are updated
ret1, updated_frs_mask1 = gf.fill_marker_gap_pattern(tgt_mkr_pos1, dnr_mkr_pos)

# 'fill_marker_gap_rbt()' function will update the given ndarray by filling its gaps using a cluster of 3 markers
# 'tgt_mkr_pos2': a 2D (n, 3) ndarray of a target marker position to fill the gaps
# 'n' is the total number of frames
tgt_mkr_pos2 = np.array((n, 3), dtype=np.float32)
# 'cl_mkr_pos': a 3D (m, n, 3) ndarray of the cluster markers
# 'm' (at least 3) is the number of markers, and 'n' is the total number of frames
cl_mkr_pos = np.array((m, n, 3), dtype=np.float32)
# 'ret2': either True or False, True if there is any frame updated, False if there is no frame updated
# 'updated_frs_mask2': a boolean ndarray to indicate which frames are updated
ret2, updated_frs_mask2 = gf.fill_marker_gap_rbt(tgt_mkr_pos2, cl_mkr_pos)

Dependencies

References

How to cite this work

DOI

License

MIT