-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathSDG_sample_generate.py
102 lines (91 loc) · 5.25 KB
/
SDG_sample_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# ---------------------------------------------- ML 20/04/2020 -----------------------------------------------------#
#
# Generate a sample of EV sessions data.
# This file can be used to generate the sample of a data using the saved SDG model.
# - User can choose between a default trained SDG model, or a latest model trained from a new dataset
# - Each SDG model is a list of 3 models - AM,MMc and MMe
# Arrival model, mixture model for connected time and mixture model for energy required
# - Use can specify which AM to use.
# - IAT: mean/poly/loses
# - AC: poisson_fit/neg_bio_reg
# - Sample is generated for the given horizon. horizon is defined by a starting and ending date
# dependencies: modeling.generate_sample.py
# -------------------------------------------------------------------------------------------------------------------- #
import glob
import os
import pickle
import datetime
import argparse
# load the config file
import json
config = json.load(open('config.json'))
def main(args):
# here we can specify the horizon for data generation
os.makedirs(config['dir_names']['generated_samples_name'], exist_ok=True)
try:
horizon_start = datetime.datetime.strptime(str(args['start_date']), '%d/%m/%Y')
horizon_end = datetime.datetime.strptime(str(args['end_date']), '%d/%m/%Y')
if config['verbose'] > 0: print(' ------------------- Generating data -------------------')
if config['verbose'] > 0: print(' \t\t Horizon : '+str(horizon_start) + ' to '+ str(horizon_end))
except:
print(" Please provide starting and ending date for data generation!")
return
# we will pull the SDG pickle file
try:
if str(args['use']) == 'default':
model_loc = config['models']['loc']
model_name = config['models'][str(args['model']+args['lambdamod'])]
file = os.path.join(model_loc,model_name)
if str(args['use']) == 'latest':
list_of_files = glob.glob(config['dir_names']['models_folder_name']+ '/SDG Model (' + str(args['model']) + ',' + str(
args['lambdamod']) + ')*') # * means all if need specific format then *.csv
latest_file = max(list_of_files, key=os.path.getctime)
file = os.path.join(latest_file)
if config['verbose'] > 0: print(' \t\t Using : ' + str(args['use']) + ' model ')
if config['verbose'] > 0: print(' \t\t location : ' + str(file))
except:
print(" \t\t Please select a trained SDG model!\n"
" \t\t argument '-use default' can be used to use default models\n"
" \t\t and '-use latest' for using the latest trained models ")
return
with open(file, 'rb') as f:
x = pickle.load(f)
print(x)
# these are the three saved models.
AM,MMc,MMe = x[0],x[1],x[2]
# we load the latest model that was saved
save_loc = config['dir_names']['generated_samples_name']
save_name = 'Generated sample ('+str(args['model'])+','+str(args['lambdamod'])+') Horizon =' + str(horizon_start.date()) + "-to-" + str(
horizon_end.date()) + '.csv'
# this function will generate the data using models AM,MMc and MMe in the given horizon.
from modeling.generate_sample import generate_sample
gen_sample = generate_sample(AM=AM,MMc=MMc, MMe = MMe,
horizon_start=horizon_start,horizon_end=horizon_end)
gen_sample.to_csv(os.path.join(save_loc, save_name), index=False)
print(" EV sessions data saved at : ", save_loc)
print(" EV sessions data filename : ", save_name)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Arguments to SDG sample generate: \n '
'Generates a sample of EV sessions data.')
parser.add_argument('-start_date',
help='First date of the horizon for data generation. \n'
'Format: dd/mm/YYYY')
parser.add_argument('-end_date',
help='Last date of the horizon for data generation. \n'
'Format: dd/mm/YYYY')
parser.add_argument('-use', default='default',
help='Which kind of models to use. \n'
'\t\t "default" for using the default models \n'
'\t\t "latest" for using the lastest trained models')
parser.add_argument('-model', default='AC',
help='Modeling method to be used for modeling arrival times: \n'
'\t\t AC for arrival count models \n'
'\t\t IAT for inter-arrival time models')
parser.add_argument('-lambdamod', default='poisson_fit',
help='Method to be used for modeling lambda:\n'
'\t\t AC: has two options, poisson_fit/neg_bio_reg \n'
'\t\t IAT: has three options, mean/loess/poly')
parser.add_argument('-verbose', default=3,
help='0 to print nothing; >0 values for printing more information. Possible values: 0, 1, 2, 3. (integer)')
args = parser.parse_args()
main(vars(args))