forked from zengyan-97/X2-VLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pretrain.py
647 lines (496 loc) · 28.6 KB
/
Pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
# Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts (https://arxiv.org/abs/2111.08276)
# Github: https://github.com/zengyan-97/X-VLM
# Copyright (c) 2022, ByteDance Inc.
# All rights reserved.
import argparse
import os
import sys
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
import math
import torch
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.optim import Optimizer
import utils
from dataset import create_dataset
from scheduler import create_scheduler
from optim import create_optimizer
from utils.checkpointer import Checkpointer
from utils.hdfs_io import hmkdir, hcopy
from accelerators.apex_ddp_accelerator import ApexDDPAccelerator
def reinit_scheduler_properties_mysched(optimizer: Optimizer, scheduler, cfg) -> None:
"""
with ApexDDP, do re-init to avoid lr_scheduler warning.
issue: https://github.com/pytorch/pytorch/issues/27595
issue: https://github.com/PyTorchLightning/pytorch-lightning/issues/841
"""
args = cfg
if scheduler.optimizer == optimizer:
# from transformers import get_linear_schedule_with_warmup
def lr_lambda(current_step: int):
if current_step < args.num_warmup_steps:
return float(current_step) / float(max(1, args.num_warmup_steps))
return max(
0.0, float(args.num_training_steps - current_step) / float(
max(1, args.num_training_steps - args.num_warmup_steps))
)
scheduler.__init__(optimizer, lr_lambda, last_epoch=-1)
def run_image_iter(model, image_batch, optimizer, accelerator, metric_logger, device,
ret_match_loss=True, return_loss_only=False):
image, batch = image_batch[0].to(device, non_blocking=True), [t.to(device) if t is not None else None for t in image_batch[1:]]
text_ids, text_atts, text_ids_masked, masked_pos, masked_ids = batch
loss = model(image, text_ids, text_atts, text_ids_masked=text_ids_masked,
masked_pos=masked_pos, masked_ids=masked_ids, ret_match_loss=ret_match_loss)
if return_loss_only:
return loss
optimizer.zero_grad()
loss_in_total = loss['loss_itc'] + loss['loss_itm'] + loss['loss_mlm']
accelerator.backward_step(loss_in_total, optimizer)
accelerator_clip_grad_norm = float(config['accelerator']['CLIP_GRAD_NORM'])
if accelerator_clip_grad_norm > 0:
accelerator.optimizer_step(optimizer, model, accelerator_clip_grad_norm)
optimizer.step()
metric_logger.update(loss_itc=loss['loss_itc'].item())
metric_logger.update(loss_itm=loss['loss_itm'].item())
metric_logger.update(loss_mlm=loss['loss_mlm'].item())
def run_region_iter(model, region_batch, optimizer, accelerator, metric_logger, device,
ret_match_loss=True, return_loss_only=False):
image, region_batch = region_batch[0].to(device, non_blocking=True), [
t.to(device) if t is not None else None for t in region_batch[1:]]
idx_to_group_img, text_ids, text_atts, text_ids_masked, masked_pos, masked_ids, \
image_atts, target_bbox, is_image = region_batch
if config['calc_image_bbox_loss']:
is_image = None
loss = model(image, text_ids, text_atts, text_ids_masked=text_ids_masked, masked_pos=masked_pos,
masked_ids=masked_ids,
image_atts=image_atts, idx_to_group_img=idx_to_group_img, target_bbox=target_bbox, is_image=is_image,
ret_bbox_loss=True, ret_match_loss=ret_match_loss)
if return_loss_only:
return loss
optimizer.zero_grad()
loss_in_total = loss['loss_itc'] + loss['loss_itm'] + loss['loss_mlm'] + loss['loss_bbox'] + loss['loss_giou']
accelerator.backward_step(loss_in_total, optimizer)
accelerator_clip_grad_norm = float(config['accelerator']['CLIP_GRAD_NORM'])
if accelerator_clip_grad_norm > 0:
accelerator.optimizer_step(optimizer, model, accelerator_clip_grad_norm)
optimizer.step()
metric_logger.update(loss_ritc=loss['loss_itc'].item())
metric_logger.update(loss_ritm=loss['loss_itm'].item())
metric_logger.update(loss_rmlm=loss['loss_mlm'].item())
metric_logger.update(loss_rbbox=loss['loss_bbox'].item())
metric_logger.update(loss_rgiou=loss['loss_giou'].item())
def run_video_iter(model, video_batch, optimizer, accelerator, metric_logger, device,
ret_match_loss=True, return_loss_only=False):
frames, batch = video_batch[0].to(device, non_blocking=True), [t.to(device) if t is not None else None for t in video_batch[1:]]
text_ids, text_atts, text_ids_masked, masked_pos, masked_ids = batch
loss = model(frames, text_ids, text_atts, text_ids_masked=text_ids_masked,
masked_pos=masked_pos, masked_ids=masked_ids, ret_match_loss=ret_match_loss)
if return_loss_only:
return loss
optimizer.zero_grad()
loss_in_total = loss['loss_itc'] + loss['loss_itm'] + loss['loss_mlm']
accelerator.backward_step(loss_in_total, optimizer)
accelerator_clip_grad_norm = float(config['accelerator']['CLIP_GRAD_NORM'])
if accelerator_clip_grad_norm > 0:
accelerator.optimizer_step(optimizer, model, accelerator_clip_grad_norm)
optimizer.step()
metric_logger.update(loss_vitc=loss['loss_itc'].item())
metric_logger.update(loss_vitm=loss['loss_itm'].item())
metric_logger.update(loss_vmlm=loss['loss_mlm'].item())
def run_text_iter(model, batch, optimizer, accelerator, metric_logger, device, return_loss_only=False):
batch = [t.to(device) if t is not None else None for t in batch]
text_ids, text_atts, text_ids_masked, masked_pos, masked_ids = batch
loss = model(None, text_ids, text_atts, text_ids_masked=text_ids_masked, masked_pos=masked_pos, masked_ids=masked_ids)
if return_loss_only:
return loss
optimizer.zero_grad()
loss_in_total = loss['loss_mlm']
accelerator.backward_step(loss_in_total, optimizer)
accelerator_clip_grad_norm = float(config['accelerator']['CLIP_GRAD_NORM'])
if accelerator_clip_grad_norm > 0:
accelerator.optimizer_step(optimizer, model, accelerator_clip_grad_norm)
optimizer.step()
metric_logger.update(loss_tmlm=loss['loss_mlm'].item())
def run_mtext_iter(model, batch, optimizer, accelerator, metric_logger, device, return_loss_only=False):
batch = [t.to(device) if t is not None else None for t in batch]
text_ids, text_atts, text_ids_masked, masked_pos, masked_ids, \
text_ids_2, text_atts_2, text_ids_masked_2, masked_pos_2, masked_ids_2 = batch
loss = model(None, text_ids=text_ids, text_atts=text_atts, text_ids_masked=text_ids_masked,
masked_pos=masked_pos, masked_ids=masked_ids, text_ids_2=text_ids_2,
text_atts_2=text_atts_2, text_ids_masked_2=text_ids_masked_2,
masked_pos_2=masked_pos_2, masked_ids_2=masked_ids_2)
if return_loss_only:
return loss
optimizer.zero_grad()
loss_in_total = loss['loss_ttc'] + loss['loss_ttm'] + loss['loss_mlm']
accelerator.backward_step(loss_in_total, optimizer)
accelerator_clip_grad_norm = float(config['accelerator']['CLIP_GRAD_NORM'])
if accelerator_clip_grad_norm > 0:
accelerator.optimizer_step(optimizer, model, accelerator_clip_grad_norm)
optimizer.step()
metric_logger.update(loss_tt_ttc=loss['loss_ttc'].item())
metric_logger.update(loss_tt_ttm=loss['loss_ttm'].item())
metric_logger.update(loss_tt_mlm=loss['loss_mlm'].item())
def run_mixed_iter(model, image_batch, region_batch, text_batch, video_batch, mtext_batch,
optimizer, accelerator, metric_logger, device, ret_match_loss=True):
optimizer.zero_grad()
if video_batch is not None:
v_loss = run_video_iter(model, video_batch, optimizer, accelerator, metric_logger, device,
ret_match_loss=ret_match_loss, return_loss_only=True)
accelerator.backward_step(config['videos'].get('iter_perc', 1.0) * (
v_loss['loss_itc'] + v_loss['loss_itm'] + v_loss['loss_mlm']), optimizer)
metric_logger.update(loss_vitc=v_loss['loss_itc'].item())
metric_logger.update(loss_vitm=v_loss['loss_itm'].item())
metric_logger.update(loss_vmlm=v_loss['loss_mlm'].item())
i_loss = run_image_iter(model, image_batch, optimizer, accelerator, metric_logger, device,
ret_match_loss=ret_match_loss, return_loss_only=True)
loss_in_total = config['images'].get('iter_perc', 1.0) * (i_loss['loss_itc'] + i_loss['loss_itm'] + i_loss['loss_mlm'])
metric_logger.update(loss_itc=i_loss['loss_itc'].item())
metric_logger.update(loss_itm=i_loss['loss_itm'].item())
metric_logger.update(loss_mlm=i_loss['loss_mlm'].item())
if region_batch is not None:
r_loss = run_region_iter(model, region_batch, optimizer, accelerator, metric_logger, device,
ret_match_loss=ret_match_loss, return_loss_only=True)
if config.get('regions_use_bbox_only', False):
loss_in_total = loss_in_total + config['regions'].get('iter_perc', 1.0) * (
r_loss['loss_bbox'] + r_loss['loss_giou'])
else:
loss_in_total = loss_in_total + config['regions'].get('iter_perc', 1.0) * (
r_loss['loss_itc'] + r_loss['loss_itm'] +
r_loss['loss_mlm'] + r_loss['loss_bbox'] +
r_loss['loss_giou'])
metric_logger.update(loss_ritc=r_loss['loss_itc'].item())
metric_logger.update(loss_ritm=r_loss['loss_itm'].item())
metric_logger.update(loss_rmlm=r_loss['loss_mlm'].item())
metric_logger.update(loss_rbbox=r_loss['loss_bbox'].item())
metric_logger.update(loss_rgiou=r_loss['loss_giou'].item())
if text_batch is not None:
t_loss = run_text_iter(model, text_batch, optimizer, accelerator, metric_logger, device, return_loss_only=True)
loss_in_total = loss_in_total + config['texts'].get('iter_perc', 1.0) * t_loss['loss_mlm']
metric_logger.update(loss_tmlm=t_loss['loss_mlm'].item())
if mtext_batch is not None:
tt_loss = run_mtext_iter(model, mtext_batch, optimizer, accelerator, metric_logger, device, return_loss_only=True)
loss_in_total = loss_in_total + config['mtexts'].get('iter_perc', 1.0) * (
tt_loss['loss_ttc'] + tt_loss['loss_ttm'] + tt_loss['loss_mlm'])
metric_logger.update(loss_ttc=tt_loss['loss_ttc'].item())
metric_logger.update(loss_ttm=tt_loss['loss_ttm'].item())
metric_logger.update(loss_ttmlm=tt_loss['loss_mlm'].item())
accelerator.backward_step(loss_in_total, optimizer)
accelerator_clip_grad_norm = float(config['accelerator']['CLIP_GRAD_NORM'])
if accelerator_clip_grad_norm > 0:
accelerator.optimizer_step(optimizer, model, accelerator_clip_grad_norm)
optimizer.step()
def train(model, image_loader, region_loader, text_loader, image_loader_aux, video_loader, video_loader_aux, mtext_loader, optimizer, epoch_info, device, scheduler, config, accelerator, checkpointer):
model.train()
start_epoch, _ = epoch_info
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('loss_itc', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_mlm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('lr_large', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
header = 'Train step: [{}]'.format(start_epoch)
assert start_epoch == 0
print_freq = 50
world_size = utils.get_world_size()
step_per_epoch = math.ceil(config['train_dataset_size']/(config['batch_size']*world_size))
assert step_per_epoch > 1
global_step = 0 # start from 0
if image_loader_aux is not None:
image_iter_aux = iter(image_loader_aux) # cleaner data
else:
image_iter_aux = None
if video_loader is not None:
video_iter = iter(video_loader)
metric_logger.add_meter('loss_vitc', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_vitm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_vmlm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
else:
video_iter = None
if video_loader_aux is not None:
video_iter_aux = iter(video_loader_aux) # cleaner data
else:
video_iter_aux = None
if region_loader is not None:
region_iter = iter(region_loader)
if not config.get('regions_use_bbox_only', False):
metric_logger.add_meter('loss_ritc', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_ritm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_rmlm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_rbbox', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_rgiou', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
else:
region_iter = None
if text_loader is not None:
text_iter = iter(text_loader)
metric_logger.add_meter('loss_tmlm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
else:
text_iter = None
if mtext_loader is not None:
# parallel texts
mtext_iter = iter(mtext_loader)
metric_logger.add_meter('loss_ttc', utils.SmoothedValue(window_size=50, fmt='{value:.2f}'))
metric_logger.add_meter('loss_ttm', utils.SmoothedValue(window_size=50, fmt='{value:.2f}'))
metric_logger.add_meter('loss_ttmlm', utils.SmoothedValue(window_size=50, fmt='{value:.2f}'))
else:
mtext_iter = None
stop_calc_itm = config.get('stop_calc_itm', float('inf')) # steps
print(f"### Stop Calculate Matching Loss After {stop_calc_itm} Steps", flush=True)
for i, batch in enumerate(metric_logger.log_every(image_loader, print_freq, header, step_per_epoch, epoch_info)):
with torch.no_grad():
model.module.temp.clamp_(0.001, 0.5)
if config.get('mixed_in_batch', False):
if image_iter_aux is not None: # if having cleaner data
ret_match_loss = False # do not calc matching loss on noisy data
if random.random() < config['aux_iter_perc']:
batch = next(image_iter_aux) # 这个实现可能不那么好, 在1个epoch中, 会丢一些 noisy data
ret_match_loss = global_step < stop_calc_itm
else:
ret_match_loss = global_step < stop_calc_itm
if video_iter_aux is not None:
assert video_iter is not None
if random.random() < config['video_aux_iter_perc']:
video_batch = next(video_iter_aux)
else:
video_batch = next(video_iter)
else:
video_batch = next(video_iter) if video_iter is not None else None
region_batch = next(region_iter) if region_iter is not None else None
text_batch = next(text_iter) if text_iter is not None else None
mtext_batch = next(mtext_iter) if mtext_iter is not None else None
run_mixed_iter(model, batch, region_batch, text_batch, video_batch, mtext_batch,
optimizer, accelerator, metric_logger, device, ret_match_loss=ret_match_loss)
else:
raise ValueError("i didn't use this")
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(lr_large=optimizer.param_groups[2]["lr"])
scheduler.step()
current_epoch = global_step // step_per_epoch
if (global_step+1) % step_per_epoch == 0:
if utils.is_main_process():
train_stats = {k: "{:.5f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': current_epoch,
}
with open("log.txt", "a") as f:
f.write(json.dumps(log_stats) + "\n")
if ((current_epoch+1) % config['ckpt_frequent'] == 0) or (current_epoch+1 == config['schedular']['epochs']):
model_without_ddp = model
if hasattr(model, 'module'):
model_without_ddp = model.module
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': scheduler.state_dict(),
'config': config,
# 'epoch': current_epoch,
}
checkpointer.save_checkpoint(model_state=save_obj,
epoch=current_epoch,
training_states=optimizer.state_dict())
dist.barrier()
if (global_step+1) % config['ckpt_frequent_step'] == 0:
if utils.is_main_process():
model_without_ddp = model
if hasattr(model, 'module'):
model_without_ddp = model.module
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': scheduler.state_dict(),
'config': config,
# 'epoch': current_epoch,
}
checkpointer.save_checkpoint(model_state=save_obj,
epoch=current_epoch, step=global_step,
training_states=optimizer.state_dict())
dist.barrier()
if config['schedular'].get('num_training_steps', False) and (global_step+1 >= config['schedular']['num_training_steps']):
break
global_step += 1
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.5f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
config['batch_size'] = config['images']['batch_size']
if args.epoch > 0:
config['schedular']['epochs'] = args.epoch
print(f"### set epochs to: {args.epoch}", flush=True)
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
print("Creating dataset", flush=True)
image_dataset, region_dataset, text_dataset, image_dataset_aux, video_dataset, video_dataset_aux, mtext_dataset = create_dataset('pretrain', config)
if utils.is_main_process():
print(f"### images: {config['train_file']}", flush=True)
print(f"### images_aux: {config.get('train_file_aux', '')}", flush=True)
print(f"### regions: {config.get('train_file_regions', '')}", flush=True)
print(f"### texts: {config.get('train_file_text', '')}", flush=True)
print(f"### videos: {config.get('train_file_videos', '')}", flush=True)
print(f"### videos_aux: {config.get('train_file_videos_aux', '')}", flush=True)
print(f"### mtexts: {config.get('train_file_mtext', '')}", flush=True)
print(f"### batch size, {config['batch_size']} x {int(os.environ.get('WORLD_SIZE', 1))}")
image_loader = torch.utils.data.DataLoader(image_dataset, batch_size=config['images']['batch_size'],
num_workers=config['images']['num_workers'],
pin_memory=True,
drop_last=False,
collate_fn=image_dataset.collate_fn)
if video_dataset is not None:
video_loader = torch.utils.data.DataLoader(video_dataset,
batch_size=config['videos']['batch_size'],
num_workers=config['videos']['num_workers'],
pin_memory=True,
drop_last=False,
collate_fn=video_dataset.collate_fn)
else:
video_loader = None
if video_dataset_aux is not None:
video_loader_aux = torch.utils.data.DataLoader(video_dataset_aux,
batch_size=config['videos']['batch_size'],
num_workers=config['videos']['num_workers'],
pin_memory=True,
drop_last=False,
collate_fn=video_dataset_aux.collate_fn)
else:
video_loader_aux = None
if image_dataset_aux is not None: # for small-scale high-quality images
image_loader_aux = torch.utils.data.DataLoader(image_dataset_aux,
batch_size=config['images']['batch_size'],
num_workers=config['images']['num_workers'],
pin_memory=True,
drop_last=False,
collate_fn=image_dataset_aux.collate_fn)
else:
image_loader_aux = None
if region_dataset is not None:
region_loader = torch.utils.data.DataLoader(region_dataset, batch_size=config['regions']['max_images'],
# batch_size = max_images * max_regions
num_workers=config['regions']['num_workers'],
pin_memory=True,
drop_last=False,
collate_fn=region_dataset.collate_fn)
else:
region_loader = None
if text_dataset is not None:
text_loader = torch.utils.data.DataLoader(text_dataset, batch_size=config['texts']['batch_size'],
num_workers=config['texts']['num_workers'],
pin_memory=True,
drop_last=False,
collate_fn=text_dataset.collate_fn)
else:
text_loader = None
if mtext_dataset is not None:
mtext_loader = torch.utils.data.DataLoader(mtext_dataset, batch_size=config['mtexts']['batch_size'],
num_workers=config['mtexts']['num_workers'],
pin_memory=True,
drop_last=False,
collate_fn=mtext_dataset.collate_fn)
else:
mtext_loader = None
print(f"Creating model {config.get('model_type', 'XVLM')}", flush=True)
if config.get('model_type', ''):
if config['model_type'] == 'XVLMPlus':
from models.model_pretrain import XVLMPlus
assert os.path.exists(args.checkpoint)
model = XVLMPlus(config=config, load_text_params=False, load_vision_params=False, load_cross_params=False, pretraining=False)
text_ckpt_rpath = ''
if config.get('replace_text_encoder', False):
text_ckpt_rpath = os.path.join(config['text_encoder'], 'pytorch_model.bin')
model.load_pretrained(args.checkpoint, config, text_ckpt_rpath=text_ckpt_rpath)
elif config['model_type'] == 'CrossViewLM':
from models.model_pretrain import CrossViewLM
assert os.path.exists(args.checkpoint)
model = CrossViewLM(config=config, load_text_params=False, load_vision_params=False, load_cross_params=False,
pretraining=False)
text_ckpt_rpath = ''
if config.get('replace_text_encoder', False):
text_ckpt_rpath = os.path.join(config['text_encoder'], 'pytorch_model.bin')
model.load_pretrained(args.checkpoint, config, text_ckpt_rpath=text_ckpt_rpath)
else:
raise ValueError(f"config['model_type'] == {config['model_type']}")
else:
from models.model_pretrain import XVLM
if os.path.exists(args.checkpoint): # for domain pre-training
model = XVLM(config=config, load_text_params=False, load_vision_params=False, pretraining=False)
model.load_pretrained(args.checkpoint, config, is_domain_pretrain=True)
else:
model = XVLM(config=config)
# print(model)
model = model.to(device)
print("### Total Params: ", sum(p.numel() for p in model.parameters() if p.requires_grad), flush=True)
rank = int(os.environ.get('RANK', 0))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
world_size = int(os.environ.get('WORLD_SIZE', 1))
arg_sche['step_per_epoch'] = math.ceil(config['train_dataset_size'] / (config['batch_size'] * world_size))
arg_sche['min_rate'] = config['min_lr'] / arg_opt['lr'] if 'min_lr' in config else 0
lr_scheduler = create_scheduler(arg_sche, optimizer)
arg_acc = utils.AttrDict(config['accelerator'])
accelerator = ApexDDPAccelerator(arg_acc, logger=None)
model, optimizer, lr_scheduler = accelerator.set_up(model, optimizer, lr_scheduler, local_rank, world_size, rank)
reinit_scheduler_properties_mysched(optimizer, lr_scheduler, arg_sche)
checkpointer = Checkpointer(args.output_dir)
print("### output_dir, ", args.output_dir, flush=True)
start_time = time.time()
start_epoch = 0
max_epoch = config['schedular']['epochs']
epoch_info = (start_epoch, max_epoch)
if config.get('replace_text_encoder', False):
if utils.is_main_process():
print("### Replaced Text Encoder & Saving Zero-Shot Ckpt")
model_without_ddp = model
if hasattr(model, 'module'):
model_without_ddp = model.module
save_obj = {
'model': model_without_ddp.state_dict(),
'config': config,
}
checkpointer.save_checkpoint(model_state=save_obj,
epoch='zeroshot',
training_states=optimizer.state_dict())
dist.barrier()
print("Start training", flush=True)
train(model, image_loader, region_loader, text_loader, image_loader_aux, video_loader, video_loader_aux, mtext_loader, optimizer, epoch_info, device, lr_scheduler, config,
accelerator, checkpointer)
dist.barrier()
if utils.is_main_process():
os.system("cat log.txt")
hcopy('log.txt', args.output_dir)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str), flush=True)
print('### Time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--checkpoint', type=str, default='')
parser.add_argument('--output_dir', type=str, default='output/pretrain')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--epoch', default=-1, type=int)
parser.add_argument('--device', default='cuda')
parser.add_argument('--distributed', action='store_false')
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--override_cfg', default="", type=str, help="Use ; to separate keys")
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
utils.update_config(config, args.override_cfg)
if utils.is_main_process():
print('config:', json.dumps(config))
hmkdir(args.output_dir)
yaml.dump(config, open('config.yaml', 'w'))
hcopy('config.yaml', args.output_dir)
main(args, config)