MICCAI challenge for EndoVis2018. The challenge focuses on surgical scene segmentation.
See pdf for more details.
Network | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UNet | 0.87 | 0.86 | 0.73 | 0.76 | 0.82 | 0.84 | 0.68 | 0.85 | 0.00 | 0.66 | 0.88 | 0.58 | 0.71 |
AlbuNet | 0.92 | 0.91 | 0.80 | 0.79 | 0.90 | 0.90 | 0.68 | 0.78 | 0.00 | 0.76 | 0.91 | 0.71 | 0.76 |
AlbuNet+SuperLabel | 0.93 | 0.93 | 0.82 | 0.80 | 0.91 | 0.90 | 0.62 | 0.86 | 0.00 | 0.78 | 0.92 | 0.77 | 0.77 |
DeepLabV3+ | 0.91 | 0.93 | 0.81 | 0.82 | 0.94 | 0.87 | 0.51 | 0.60 | 0.00 | 0.76 | 0.92 | 0.73 | 0.73 |
DeepLabv3+SuperLabel | 0.93 | 0.93 | 0.83 | 0.79 | 0.91 | 0.90 | 0.64 | 0.85 | 0.00 | 0.79 | 0.92 | 0.82 | 0.78 |
DeepLabV3+Aug | 0.90 | 0.94 | 0.80 | 0.84 | 0.94 | 0.84 | 0.53 | 0.68 | 0.00 | 0.59 | 0.81 | 0.81 | 0.72 |
DeepLabv3+SuperLabel+Aug | 0.94 | 0.93 | 0.83 | 0.81 | 0.92 | 0.92 | 0.64 | 0.84 | 0.00 | 0.81 | 0.94 | 0.83 | 0.78 |
Network | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UNet | 0.66 | 0.87 | 0.76 | 0.77 | 0.41 | 0.22 | 0.35 | 0.22 | 0.00 | 0.09 | 0.53 | 0.00 | 0.41 |
AlbuNet | 0.69 | 0.90 | 0.76 | 0.78 | 0.51 | 0.29 | 0.38 | 0.15 | 0.00 | 0.23 | 0.59 | 0.01 | 0.44 |
AlbuNet+SuperLabel | 0.75 | 0.94 | 0.79 | 0.84 | 0.60 | 0.43 | 0.43 | 0.45 | 0.00 | 0.45 | 0.62 | 0.00 | 0.53 |
DeepLabV3+ | 0.74 | 0.89 | 0.76 | 0.80 | 0.65 | 0.29 | 0.30 | 0.40 | 0.00 | 0.06 | 0.56 | 0.00 | 0.45 |
DeepLabv3+SuperLabel | 0.74 | 0.92 | 0.78 | 0.83 | 0.64 | 0.33 | 0.33 | 0.39 | 0.00 | 0.20 | 0.59 | 0.00 | 0.48 |
Network | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AlbuNet+SuperLabel | 0.96 | 0.96 | 0.9 | 0.88 | 0.96 | 0.95 | 0.72 | 0.9 | 0 | 0.83 | 0.96 | 0.87 | 0.82 |
DeepLabV3+ | 0.96 | 0.95 | 0.89 | 0.87 | 0.96 | 0.96 | 0.69 | 0.9 | 0.37 | 0.84 | 0.97 | 0.86 | 0.85 |
DeepLabv3+SuperLabel | 0.97 | 0.96 | 0.89 | 0.87 | 0.96 | 0.96 | 0.7 | 0.9 | 0.38 | 0.82 | 0.96 | 0.89 | 0.86 |
see Comparison.ipynb
pip install tensorboardX
pip install tensorflow
start tensorboard by tensorboard --logdir=<dir_to_store_log_file>