-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
159 lines (119 loc) · 4.63 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import math
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
from tensorflow.python.framework import ops
utrain = [[ 13.91402715],
[ 61.49773756],
[ 129.47963801],
[ 10.85972851]]
stdtrain = [[ 5.69248394],
[ 11.7652854 ],
[ 64.00527263],
[ 4.62173284]]
my_data = pd.read_csv('test_data.csv').as_matrix()
M = np.shape(my_data)[0]
N = np.shape(my_data)[1]
L_Z = N
Y_I = np.shape(my_data)[1] - 1
#t_m = int(M*0.8)
#train_set = my_data[0:t_m,:]
test_set = my_data[:,:]
X_test = test_set[:,0:Y_I].T
X_test_norm = (X_test - utrain) / stdtrain
Y_test = test_set[:,Y_I].T.reshape(1,-1)
def create_placeholders(n_x, n_y):
X = tf.placeholder(tf.float32, shape = [n_x,None])
Y = tf.placeholder(tf.float32, shape = [n_y,None])
return X, Y
def forward_propagation(X, parameters):
print("FP")
# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents:
Z1 = tf.add(tf.matmul(W1,X),b1) # Z1 = np.dot(W1, X) + b1
A1 = tf.nn.relu(Z1) # A1 = relu(Z1)
Z2 = tf.add(tf.matmul(W2,A1),b2) # Z2 = np.dot(W2, a1) + b2
A2 = tf.nn.relu(Z2) # A2 = relu(Z2)
Z3 = tf.add(tf.matmul(W3,A2),b3) # Z3 = np.dot(W3,Z2) + b3
### END CODE HERE ###
return Z3
def printParams(parameters,sess, save):
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
Utrain = parameters['Utrain']
STDtrain = parameters['STDtrain']
print ("W1 = " + str(W1.eval(session=sess)))
print ("b1 = " + str(b1.eval(session=sess)))
print ("W2 = " + str(W2.eval(session=sess)))
print ("b2 = " + str(b2.eval(session=sess)))
print ("W3 = " + str(W3.eval(session=sess)))
print ("b3 = " + str(b3.eval(session=sess)))
print ("Utrain = " + str(Utrain.eval(session=sess)))
print ("STDtrain = " + str(STDtrain.eval(session=sess)))
if save:
saver = tf.train.Saver({"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3})
saver.save(sess, 'output.chkp')
def predict(X_test, Y_test, utrain, stdtrain, l_z):
ops.reset_default_graph()
(n_x, m) = X_test.shape
n_y = Y_test.shape[0]
l_z2 = l_z + l_z/2
W1 = tf.get_variable("W1", [l_z,n_x])
b1 = tf.get_variable("b1", [l_z,1])
W2 = tf.get_variable("W2", [l_z2,l_z])
b2 = tf.get_variable("b2", [l_z2,1])
W3 = tf.get_variable("W3", [1,l_z2])
b3 = tf.get_variable("b3", [1,1])
Utrain = tf.constant(utrain)
STDtrain = tf.constant(stdtrain)
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3
}
X, Y = create_placeholders(n_x, n_y)
A3 = tf.round(tf.sigmoid(forward_propagation(X, parameters)))
saver = tf.train.Saver()
sess = tf.Session()
saver.restore(sess, "./output.chkp")
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3, "Utrain": Utrain, "STDtrain": STDtrain}
printParams(parameters,sess,False)
result = sess.run(A3, feed_dict={X: X_test, Y: Y_test} )
print("RESULT = "+str(result))
print("Y = "+str(Y_test))
equal = result == Y_test;
print("EQUAL = "+str(np.sum(equal)))
truep = np.sum( (result == 1) & (result == Y_test))
totalp = np.sum(result == 1)
actualp = np.sum(Y_test == 1)
print("TOTAL POSITIVE = "+str(totalp))
print("TRUE POSITIVE = "+str(truep))
print("ACTUAL POSITIVE = "+str(actualp))
precision = (100* truep) / totalp
recall = (100 *truep) / actualp
f1 = (precision * recall) / (precision + recall)
print("PRECISION "+ str ( precision ) +"%" )
print("RECALL "+ str ( recall) +"%" )
print("F1 "+ str ( 2*f1) +"%" )
print("TOTAL = "+str(Y_test.size))
print("ACCURACY "+ str ( (100*np.sum(result == Y_test)) / Y_test.size ) +"%" )
sess.close()
predict(X_test_norm, Y_test, utrain, stdtrain, L_Z)