Below are the instructions for connecting a Postgress server. The installation steps should be the same for connecting all kinds of servers. Different servers would require different configurations in the .yaml or DAG files. See https://docs.open-metadata.org/integrations/connectors for your configuration.
Goal: To run Postgres metadata ingestion and quality tests with OpenMetadata using Airflow scheduler
Note: This procedure does not support Windows, because Windows does not implement "signal.SIGALRM". It is highly recommended to use WSL 2 if you are on Windows.
See https://docs.open-metadata.org/overview/run-openmetadata-with-prefect "Requirements" section
-
Clone this git hub repo:
git clone https://github.com/open-metadata/OpenMetadata.git
-
Cd to ~/.../openmetadata/docker/metadata
-
Start the OpenMetadata containers. This will allow you run OpenMetadata in Docker:
docker compose up -d
- To check the status of services, run
docker compose ps
- To access the UI: http://localhost:8585
- Install the OpenMetadata ingestion package.
-
(optional but highly recommended): Before installing this package, it is recommended to create and activate a virtual environment. To do this, run:
python -m venv env
andsource env/bin/activate
-
To install the OpenMetadata ingestion package:
pip install --upgrade "openmetadata-ingestion[docker]==0.10.3"
(specify the release version to ensure compatibility)
- Install Airflow:
- 5A: Install Airflow Lineage Backend:
pip3 install "openmetadata-ingestion[airflow-container]"==0.10.3
- 5B: Install Airflow postgres connector module:
pip3 install "openmetadata-ingestion[postgres]"==0.10.3
- 5C: Install Airflow APIs:
pip3 install "openmetadata-airflow-managed-apis"==0.10.3
- 5D: Install necessary Airflow plugins:
-
- Download the latest openmetadata-airflow-apis-plugins release from https://github.com/open-metadata/OpenMetadata/releases
-
- Untar it under your {AIRFLOW_HOME} directory (usually c/Users/Yourname/airflow). This will create and setup a plugins directory under {AIRFLOW_HOME} .
-
cp -r {AIRFLOW_HOME}/plugins/dag_templates {AIRFLOW_HOME}
-
mkdir -p {AIRFLOW_HOME}/dag_generated_configs
-
- (re)start the airflow webserver and scheduler
-
- Configure Airflow:
- 6A: configure airflow.cfg in your AIRFLOW_HOME directory. Check and make all the folder directories point to the right places. For instance, dags_folder = YOUR_AIRFLOW_HOME/dags
- 6B: configure openmetadata.yaml and update the airflowConfiguration section. See: https://docs.open-metadata.org/integrations/airflow/configure-airflow-in-the-openmetadata-server
- Prepare the Ingestion DAG: To see a more complete tutorial on ingestion DAG, see https://docs.open-metadata.org/integrations/connectors/postgres/run-postgres-connector-with-the-airflow-sdk To be brief, below is my own DAG. Copy & Paste the following into a python file (postgres_demo.py):
import pathlib
import json
from datetime import timedelta
from airflow import DAG
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from metadata.config.common import load_config_file
from metadata.ingestion.api.workflow import Workflow
from airflow.utils.dates import days_ago
default_args = {
"owner": "user_name",
"email": ["username@org.com"],
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=60)
}
config = """
{
"source":{
"type": "postgres",
"serviceName": "postgres_demo",
"serviceConnection": {
"config": {
"type": "Postgres",
"username": "postgres", (change to your username)
"password": "postgres", (change to your password)
"hostPort": "192.168.1.55:5432", (change to your hostPort)
"database": "surveillance_hub" (change to your database)
}
},
"sourceConfig":{
"config": { (all of the following can switch to true or false)
"enableDataProfiler": "true" or "false",
"markDeletedTables": "true" or "false",
"includeTables": "true" or "false",
"includeViews": "true" or "false",
"generateSampleData": "true" or "false"
}
}
},
"sink":{
"type": "metadata-rest",
"config": {}
},
"workflowConfig": {
"openMetadataServerConfig": {
"hostPort": "http://localhost:8585/api",
"authProvider": "no-auth"
}
}
}
"""
def metadata_ingestion_workflow():
workflow_config = json.loads(config)
workflow = Workflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
with DAG(
"sample_data",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
schedule_interval='*/5 * * * *',
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=metadata_ingestion_workflow,
)
if __name__ == "__main__":
metadata_ingestion_workflow()
- Run the DAG:
python postgres_demo.py
- Alternatively, we could run without Airflow SDK and with OpenMetadata's own methods. Run
metadata ingest -c /Your_Path_To_Json/.json
The json configuration is exactly the same as the json configuration in the DAG. - Or, we could also run it with
metadata ingest -c /Your_Path_To_Yaml/.yaml
The yaml configuration would be the exact same except without the curly brackets and the double quotes.
- Prepare the DAG OR configure the yaml/json:
- To configure the quality tests in json/yaml, see https://docs.open-metadata.org/data-quality/data-quality-overview/tests
- To prepare the DAG, see https://github.com/open-metadata/OpenMetadata/tree/0.10.3-release/data-quality/data-quality-overview
Example yaml I was using:
source:
type: postgres
serviceName: your_service_name
serviceConnection:
config:
type: Postgres
username: your_username
password: your_password
hostPort:
database: your_database
sourceConfig:
config:
type: Profiler
processor:
type: orm-profiler
config:
test_suite:
name: demo_test
tests:
- table: your_table_name (FQN)
column_tests:
- columnName: id
testCase:
columnTestType: columnValuesToBeBetween
config:
minValue: 0
maxValue: 10
sink:
type: metadata-rest
config: {}
workflowConfig:
openMetadataServerConfig:
hostPort: http://localhost:8585/api
authProvider: no-auth
Note that the table name must be FQN and match exactly with the table path on the OpenMetadata UI.
- Run it with
metadata profile -c /path_to_yaml/.yaml
Make sure to refresh the OpenMetadata UI and click on the Data Quality tab to see the results.