-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path03_EGAnet.R
61 lines (51 loc) · 2.8 KB
/
03_EGAnet.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
items_dic <- readxl::read_excel("data/ISSP_NI_M23.RData_items_dic.xlsx")
load("data/ISSP_NI_M23_comp_miss_ranger.RData")
library(EGAnet)
key.ind <- match(colnames(d[,12:41]), items_dic$item_id)
key <- items_dic$item[key.ind]
nw_re_la <- UVA(data = d[,12:41], model = "glasso", method = "wTO",
type = "adapt", key = key,
reduce = T, reduce.method = "latent",
adhoc = T)
write.csv(nw_re_la$reduced$merged, "data/merged_items.csv")
library(tidyverse)
reduced_data <- data.frame(nw_re_la$reduced$data) %>% rename(clC = Feeling.close.to.country,
lng = Important.to.speak.the.language,
rsp = Important.to.respect.political.institutions...laws,
fel = Important.to.feel.nationality,
Pbs = Support.their.country.even.if.the.country.is.in.the.wrong,
Pbi = Country.should.follow.its.own.interests,
ShC = Those.who.do.not.share.customs...traditions.cannot.become...,
ntv = LV_8, dNP = LV_9, sNP = LV_10, CoO = LV_4, ImA = LV_11)
ega <- EGA(reduced_data, algorithm = "louvain", plot.EGA = F)
ega$wc
qgraph::qgraph(ega[["network"]], layout = "spring",
legend = T, maximum = 1, edge.labels = T, edge.label.cex = 1,
details = T, theme = "colorblind",
groups = c("national identification",
"conceptions of nationhood", "conceptions of nationhood", "conceptions of nationhood",
"out-group orientations", "out-group orientations", "out-group orientations",
"conceptions of nationhood",
"national identification", "national identification",
"out-group orientations",
"national identification"),
GLratio = .9, layoutScale = c(1,1))
save(reduced_data, file = "data/ISSP_NI_M23_comp_redu.RData")
# Compute standardized node strength
net.loads(ega)$std
# Compute bootstrap
boot <- bootEGA(reduced_data, uni.method = "LE", iter = 1000, type = "parametric",
model = "glasso",
algorithm = "louvain",
plot.typicalStructure = F,
ncores = 7)
# Compute structural consistency
sc <- dimStability(boot, orig.wc = ega$wc)
# Print structural consistency
sc$dimensions ##
# 1 2 3
#0.992 1.000 0.928
# Item stability statistics plot
sc$items$plot.itemStability
# View item stability across dimensions
#View(sc$items$item.dim.rep)