The goal of discountr is to provide data analysis tools for discounting studies.
You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("mncube/discountr")
This is a basic example which shows you how to compute the area under the empirical discounting function using the trapezoid approximation as described in:
Myerson, J., Green, L., & Warusawitharana, M. (2001). Area under the curve as a measure of discounting. Journal of the experimental analysis of behavior, 76 2, 235-43 .
library(discountr)
#Create data frame with successive delays and subjective values
df_disc <- data.frame(delay = sample(1:100, 50, replace = FALSE),
value = sample(1:100, 50, replace = TRUE))
#Normalize data in preparation for the auc calculation
#This will ensure that the auc is between 0 and 1
df_disc$delay <- df_disc$delay/max(df_disc$delay)
df_disc$value <- df_disc$value/max(df_disc$value)
#Calculate the area under the curve
output_disc <- trap_auc(df_disc, x = delay, y = value)
#Get the total area under the curve (i.e., sum over trapezoids)
output_disc$total
#> [1] 0.4964062
#Get the data frame containing the area under the curve for each trapezoid
head(output_disc$data)
#> delay value x_lead y_lead auc
#> 1 0.01 0.5312500 0.02 0.7604167 0.006458333
#> 2 0.02 0.7604167 0.03 0.6562500 0.007083333
#> 3 0.03 0.6562500 0.04 0.5208333 0.005885417
#> 4 0.04 0.5208333 0.05 0.6666667 0.005937500
#> 5 0.05 0.6666667 0.08 0.3854167 0.015781250
#> 6 0.08 0.3854167 0.09 0.8750000 0.006302083
You can also convert the data frame to trapazoidal form and then explicitly provide the x_lead and y_lead values when computing the area under the empirical discounting function:
#Create data frame with successive delays and subjective values
df_disc_2 <- data.frame(delay = sample(1:100, 50, replace = FALSE),
value = sample(1:100, 50, replace = TRUE))
#Normalize data in preparation for auc calculation
df_disc_2$delay <- df_disc_2$delay/max(df_disc_2$delay)
df_disc_2$value <- df_disc_2$value/max(df_disc_2$value)
#Reformat data in preparation to compute the trapezoidal auc
#The resulting data frame will have two new columns:
#delay_lead and value_lead
df_disc_2 <- traper(df_disc_2, x = delay, y = value, rename = TRUE)
#Calculate the area under the curve explicitly defining x_lead and y_lead
output_disc_2<- trap_auc(df_disc_2, x = delay, y = value,
x_lead = delay_lead, y_lead = value_lead)
#Get the total area under the curve (i.e., sum over trapezoids)
output_disc_2$total
#> [1] 0.4926
#Get the data frame containing the area under the curve for each trapezoid
head(output_disc_2$data)
#> delay value delay_lead value_lead auc
#> 1 0.02 0.87 0.05 0.96 0.02745
#> 2 0.05 0.96 0.06 0.94 0.00950
#> 3 0.06 0.94 0.07 0.21 0.00575
#> 4 0.07 0.21 0.09 0.78 0.00990
#> 5 0.09 0.78 0.10 0.17 0.00475
#> 6 0.10 0.17 0.11 0.02 0.00095
The package also contains functions to compute the exponential discounting model (commonly used in economics) and the hyperbolic-like discounting model (commonly used in behavioral data analysis)
#Set up values for models. In this example assume that rewards are in dollars and delays are in days
A <- 100 #True amount of reward (in dollars for this example)
b <- 1/10 #Discounting rate parameter
X <- 2 #Delay (in days for his example)
s <- 2 #Non-linear scaling factor
#Exponential model (Standard economic account)
discount_exp(A = A, b = b, X = X)
#> [1] 81.87308
#Hyperbolic-like model (Behavioral model)
discount_hypl(A = A, b = b, X = X, s = s)
#> [1] 69.44444
#Hyperbolic model (Behavioral model, must use s = 1)
discount_hypl(A = A, b = b, X = X, s = 1)
#> [1] 83.33333