forked from econ-ark/HARK
-
Notifications
You must be signed in to change notification settings - Fork 1
/
HARKutilities.py
1159 lines (994 loc) · 35.6 KB
/
HARKutilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
General purpose / miscellaneous functions. Includes functions to approximate
continuous distributions with discrete ones, utility functions (and their
derivatives), manipulation of discrete distributions, and basic plotting tools.
'''
from __future__ import division # Import Python 3.x division function
import functools
import re # Regular expression, for string cleaning
import warnings
import numpy as np # Python's numeric library, abbreviated "np"
import pylab as plt # Python's plotting library
import scipy.stats as stats # Python's statistics library
from scipy.interpolate import interp1d
from scipy.special import erf
def _warning(message,category = UserWarning,filename = '',lineno = -1):
'''
A "monkeypatch" to warnings, to print pretty-looking warnings. The
default behavior of the "warnings" module is to print some extra, unusual-
looking things when the user calls a warning. A common "fix" for this is
to "monkeypatch" the warnings module. See:
http://stackoverflow.com/questions/2187269/python-print-only-the-message-on-warnings
I implement this fix directly below, for all simulation and solution utilities.
'''
print(message)
warnings.showwarning = _warning
def memoize(obj):
'''
A decorator to (potentially) make functions more efficient.
With this decorator, functions will "remember" if they have been evaluated with given inputs
before. If they have, they will "remember" the outputs that have already been calculated
for those inputs, rather than calculating them again.
'''
cache = obj._cache = {}
@functools.wraps(obj)
def memoizer(*args, **kwargs):
key = str(args) + str(kwargs)
if key not in cache:
cache[key] = obj(*args, **kwargs)
return cache[key]
return memoizer
# ==============================================================================
# ============== Some basic function tools ====================================
# ==============================================================================
def getArgNames(function):
'''
Returns a list of strings naming all of the arguments for the passed function.
Parameters
----------
function : function
A function whose argument names are wanted.
Returns
-------
argNames : [string]
The names of the arguments of function.
'''
argCount = function.__code__.co_argcount
argNames = function.__code__.co_varnames[:argCount]
return argNames
class NullFunc():
'''
A trivial class that acts as a placeholder "do nothing" function.
'''
def __call__(self,*args):
'''
Returns meaningless output no matter what the input(s) is. If no input,
returns None. Otherwise, returns an array of NaNs (or a single NaN) of
the same size as the first input.
'''
if len(args) == 0:
return None
else:
arg = args[0]
if hasattr(arg,'shape'):
return np.zeros_like(arg) + np.nan
else:
return np.nan
def distance(self,other):
'''
Trivial distance metric that only cares whether the other object is also
an instance of NullFunc. Intentionally does not inherit from HARKobject
as this might create dependency problems.
Parameters
----------
other : any
Any object for comparison to this instance of NullFunc.
Returns
-------
(unnamed) : float
The distance between self and other. Returns 0 if other is also a
NullFunc; otherwise returns an arbitrary high number.
'''
try:
if other.__class__ is self.__class__:
return 0.0
else:
return 1000.0
except:
return 10000.0
# ==============================================================================
# ============== Define utility functions ===============================
# ==============================================================================
def CRRAutility(c, gam):
'''
Evaluates constant relative risk aversion (CRRA) utility of consumption c
given risk aversion parameter gam.
Parameters
----------
c : float
Consumption value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Utility
Tests
-----
Test a value which should pass:
>>> c, gamma = 1.0, 2.0 # Set two values at once with Python syntax
>>> utility(c=c, gam=gamma)
-1.0
'''
if gam == 1:
return np.log(c)
else:
return( c**(1.0 - gam) / (1.0 - gam) )
def CRRAutilityP(c, gam):
'''
Evaluates constant relative risk aversion (CRRA) marginal utility of consumption
c given risk aversion parameter gam.
Parameters
----------
c : float
Consumption value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Marginal utility
'''
return( c**-gam )
def CRRAutilityPP(c, gam):
'''
Evaluates constant relative risk aversion (CRRA) marginal marginal utility of
consumption c given risk aversion parameter gam.
Parameters
----------
c : float
Consumption value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Marginal marginal utility
'''
return( -gam*c**(-gam-1.0) )
def CRRAutilityPPP(c, gam):
'''
Evaluates constant relative risk aversion (CRRA) marginal marginal marginal
utility of consumption c given risk aversion parameter gam.
Parameters
----------
c : float
Consumption value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Marginal marginal marginal utility
'''
return( (gam+1.0)*gam*c**(-gam-2.0) )
def CRRAutilityPPPP(c, gam):
'''
Evaluates constant relative risk aversion (CRRA) marginal marginal marginal
marginal utility of consumption c given risk aversion parameter gam.
Parameters
----------
c : float
Consumption value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Marginal marginal marginal marginal utility
'''
return( -(gam+2.0)*(gam+1.0)*gam*c**(-gam-3.0) )
def CRRAutility_inv(u, gam):
'''
Evaluates the inverse of the CRRA utility function (with risk aversion para-
meter gam) at a given utility level u.
Parameters
----------
u : float
Utility value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Consumption corresponding to given utility value
'''
if gam == 1:
return np.exp(u)
else:
return( ((1.0-gam)*u)**(1/(1.0-gam)) )
def CRRAutilityP_inv(uP, gam):
'''
Evaluates the inverse of the CRRA marginal utility function (with risk aversion
parameter gam) at a given marginal utility level uP.
Parameters
----------
uP : float
Marginal utility value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Consumption corresponding to given marginal utility value.
'''
return( uP**(-1.0/gam) )
def CRRAutility_invP(u, gam):
'''
Evaluates the derivative of the inverse of the CRRA utility function (with
risk aversion parameter gam) at a given utility level u.
Parameters
----------
u : float
Utility value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Marginal consumption corresponding to given utility value
'''
if gam == 1:
return np.exp(u)
else:
return( ((1.0-gam)*u)**(gam/(1.0-gam)) )
def CRRAutilityP_invP(u, gam):
'''
Evaluates the derivative of the inverse of the CRRA marginal utility function
(with risk aversion parameter gam) at a given marginal utility level uP.
Parameters
----------
uP : float
Marginal utility value
gam : float
Risk aversion
Returns
-------
(unnamed) : float
Marginal consumption corresponding to given marginal utility value
'''
return( (-1.0/gam)*u**(-1.0/gam-1.0) )
def CARAutility(c, alpha):
'''
Evaluates constant absolute risk aversion (CARA) utility of consumption c
given risk aversion parameter alpha.
Parameters
----------
c: float
Consumption value
alpha: float
Risk aversion
Returns
-------
(unnamed): float
Utility
'''
return( 1 - np.exp(-alpha*c)/alpha )
def CARAutilityP(c, alpha):
'''
Evaluates constant absolute risk aversion (CARA) marginal utility of
consumption c given risk aversion parameter alpha.
Parameters
----------
c: float
Consumption value
alpha: float
Risk aversion
Returns
-------
(unnamed): float
Marginal utility
'''
return( np.exp(-alpha*c) )
def CARAutilityPP(c, alpha):
'''
Evaluates constant absolute risk aversion (CARA) marginal marginal utility
of consumption c given risk aversion parameter alpha.
Parameters
----------
c: float
Consumption value
alpha: float
Risk aversion
Returns
-------
(unnamed): float
Marginal marginal utility
'''
return( -alpha*np.exp(-alpha*c) )
def CARAutilityPPP(c, alpha):
'''
Evaluates constant absolute risk aversion (CARA) marginal marginal marginal
utility of consumption c given risk aversion parameter alpha.
Parameters
----------
c: float
Consumption value
alpha: float
Risk aversion
Returns
-------
(unnamed): float
Marginal marginal marginal utility
'''
return( alpha**2.0*np.exp(-alpha*c) )
def CARAutility_inv(u, alpha):
'''
Evaluates inverse of constant absolute risk aversion (CARA) utility function
at utility level u given risk aversion parameter alpha.
Parameters
----------
u: float
Utility value
alpha: float
Risk aversion
Returns
-------
(unnamed): float
Consumption value corresponding to u
'''
return( -1.0/alpha * np.log(alpha*(1-u)) )
def CARAutilityP_inv(u, alpha):
'''
Evaluates the inverse of constant absolute risk aversion (CARA) marginal
utility function at marginal utility uP given risk aversion parameter alpha.
Parameters
----------
u: float
Utility value
alpha: float
Risk aversion
Returns
-------
(unnamed): float
Consumption value corresponding to uP
'''
return( -1.0/alpha*np.log(u) )
def CARAutility_invP(u, alpha):
'''
Evaluates the derivative of inverse of constant absolute risk aversion (CARA)
utility function at utility level u given risk aversion parameter alpha.
Parameters
----------
u: float
Utility value
alpha: float
Risk aversion
Returns
-------
(unnamed): float
Marginal onsumption value corresponding to u
'''
return( 1.0/(alpha*(1.0-u)) )
def approxLognormal(N, mu=0.0, sigma=1.0, tail_N=0, tail_bound=[0.02,0.98], tail_order=np.e):
'''
Construct a discrete approximation to a lognormal distribution with underlying
normal distribution N(exp(mu),sigma). Makes an equiprobable distribution by
default, but user can optionally request augmented tails with exponentially
sized point masses. This can improve solution accuracy in some models.
Parameters
----------
N: int
Number of discrete points in the "main part" of the approximation.
mu: float
Mean of underlying normal distribution.
sigma: float
Standard deviation of underlying normal distribution.
tail_N: int
Number of points in each "tail part" of the approximation; 0 = no tail.
tail_bound: [float]
CDF boundaries of the tails vs main portion; tail_bound[0] is the lower
tail bound, tail_bound[1] is the upper tail bound. Inoperative when
tail_N = 0. Can make "one tailed" approximations with 0.0 or 1.0.
tail_order: float
Factor by which consecutive point masses in a "tail part" differ in
probability. Should be >= 1 for sensible spacing.
Returns
-------
pmf: np.ndarray
Probabilities for discrete probability mass function.
X: np.ndarray
Discrete values in probability mass function.
Written by Luca Gerotto
Based on Matab function "setup_workspace.m," from Chris Carroll's
[Solution Methods for Microeconomic Dynamic Optimization Problems]
(http://www.econ2.jhu.edu/people/ccarroll/solvingmicrodsops/) toolkit.
Latest update: 21 April 2016 by Matthew N. White
'''
# Find the CDF boundaries of each segment
if sigma > 0.0:
if tail_N > 0:
lo_cut = tail_bound[0]
hi_cut = tail_bound[1]
else:
lo_cut = 0.0
hi_cut = 1.0
inner_size = hi_cut - lo_cut
inner_CDF_vals = [lo_cut + x*N**(-1.0)*inner_size for x in range(1, N)]
if inner_size < 1.0:
scale = 1.0/tail_order
mag = (1.0-scale**tail_N)/(1.0-scale)
lower_CDF_vals = [0.0]
if lo_cut > 0.0:
for x in range(tail_N-1,-1,-1):
lower_CDF_vals.append(lower_CDF_vals[-1] + lo_cut*scale**x/mag)
upper_CDF_vals = [hi_cut]
if hi_cut < 1.0:
for x in range(tail_N):
upper_CDF_vals.append(upper_CDF_vals[-1] + (1.0-hi_cut)*scale**x/mag)
CDF_vals = lower_CDF_vals + inner_CDF_vals + upper_CDF_vals
temp_cutoffs = list(stats.lognorm.ppf(CDF_vals[1:-1], s=sigma, loc=0,
scale=np.exp(mu)))
cutoffs = [0] + temp_cutoffs + [np.inf]
CDF_vals = np.array(CDF_vals)
# Construct the discrete approximation by finding the average value within each segment
K = CDF_vals.size-1 # number of points in approximation
pmf = CDF_vals[1:(K+1)] - CDF_vals[0:K]
X = np.zeros(K)
for i in range(K):
zBot = cutoffs[i]
zTop = cutoffs[i+1]
X[i] = (-0.5)*np.exp(mu+(sigma**2)*0.5)*(erf((mu+sigma**2-np.log(zTop))*(
(np.sqrt(2)*sigma)**(-1)))-erf((mu+sigma**2-np.log(zBot))*((np.sqrt(2)*sigma)
**(-1))))*(pmf[i]**(-1))
else:
pmf = np.ones(N)/N
X = np.exp(mu)*np.ones(N)
return [pmf, X]
@memoize
def approxMeanOneLognormal(N, sigma=1.0, **kwargs):
'''
Calculate a discrete approximation to a mean one lognormal distribution.
Based on function approxLognormal; see that function's documentation for
further notes.
Parameters
----------
N : int
Size of discrete space vector to be returned.
sigma : float
standard deviation associated with underlying normal probability distribution.
Returns
-------
X : np.array
Discrete points for discrete probability mass function.
pmf : np.array
Probability associated with each point in X.
Written by Nathan M. Palmer
Based on Matab function "setup_shocks.m," from Chris Carroll's
[Solution Methods for Microeconomic Dynamic Optimization Problems]
(http://www.econ2.jhu.edu/people/ccarroll/solvingmicrodsops/) toolkit.
Latest update: 01 May 2015
'''
mu_adj = - 0.5*sigma**2;
pmf,X = approxLognormal(N=N, mu=mu_adj, sigma=sigma, **kwargs)
return [pmf,X]
def approxBeta(N,a=1.0,b=1.0):
'''
Calculate a discrete approximation to the beta distribution. May be quite
slow, as it uses a rudimentary numeric integration method to generate the
discrete approximation.
Parameters
----------
N : int
Size of discrete space vector to be returned.
a : float
First shape parameter (sometimes called alpha).
b : float
Second shape parameter (sometimes called beta).
Returns
-------
X : np.array
Discrete points for discrete probability mass function.
pmf : np.array
Probability associated with each point in X.
'''
P = 1000
vals = np.reshape(stats.beta.ppf(np.linspace(0.0,1.0,N*P),a,b),(N,P))
X = np.mean(vals,axis=1)
pmf = np.ones(N)/float(N)
return( [pmf, X] )
def approxUniform(N,bot=0.0,top=1.0):
'''
Makes a discrete approximation to a uniform distribution, given its bottom
and top limits and number of points.
Parameters
----------
N : int
The number of points in the discrete approximation
bot : float
The bottom of the uniform distribution
top : float
The top of the uniform distribution
Returns
-------
(unnamed) : np.array
An equiprobable discrete approximation to the uniform distribution.
'''
pmf = np.ones(N)/float(N)
center = (top+bot)/2.0
width = (top-bot)/2.0
X = center + width*np.linspace(-(N-1.0)/2.0,(N-1.0)/2.0,N)/(N/2.0)
return [pmf,X]
def makeMarkovApproxToNormal(x_grid,mu,sigma,K=351,bound=3.5):
'''
Creates an approximation to a normal distribution with mean mu and standard
deviation sigma, returning a stochastic vector called p_vec, corresponding
to values in x_grid. If a RV is distributed x~N(mu,sigma), then the expectation
of a continuous function f() is E[f(x)] = numpy.dot(p_vec,f(x_grid)).
Parameters
----------
x_grid: numpy.array
A sorted 1D array of floats representing discrete values that a normally
distributed RV could take on.
mu: float
Mean of the normal distribution to be approximated.
sigma: float
Standard deviation of the normal distribution to be approximated.
K: int
Number of points in the normal distribution to sample.
bound: float
Truncation bound of the normal distribution, as +/- bound*sigma.
Returns
-------
p_vec: numpy.array
A stochastic vector with probability weights for each x in x_grid.
'''
x_n = x_grid.size # Number of points in the outcome grid
lower_bound = -bound # Lower bound of normal draws to consider, in SD
upper_bound = bound # Upper bound of normal draws to consider, in SD
raw_sample = np.linspace(lower_bound,upper_bound,K) # Evenly spaced draws between bounds
f_weights = stats.norm.pdf(raw_sample) # Relative probability of each draw
sample = mu + sigma*raw_sample # Adjusted bounds, given mean and stdev
w_vec = np.zeros(x_n) # A vector of outcome weights
# Find the relative position of each of the draws
sample_pos = np.searchsorted(x_grid,sample)
sample_pos[sample_pos < 1] = 1
sample_pos[sample_pos > x_n-1] = x_n-1
# Make arrays of the x_grid point directly above and below each draw
bot = x_grid[sample_pos-1]
top = x_grid[sample_pos]
alpha = (sample-bot)/(top-bot)
# Loop through each x_grid point and add up the probability that each nearby
# draw contributes to it (accounting for distance)
for j in range(1,x_n):
c = sample_pos == j
w_vec[j-1] = w_vec[j-1] + np.dot(f_weights[c],1.0-alpha[c])
w_vec[j] = w_vec[j] + np.dot(f_weights[c],alpha[c])
# Reweight the probabilities so they sum to 1, and return
W = np.sum(w_vec)
p_vec = w_vec/W
return p_vec
# ================================================================================
# ==================== Functions for manipulating discrete distributions =========
# ================================================================================
def addDiscreteOutcomeConstantMean(distribution, x, p, sort = False):
'''
Adds a discrete outcome of x with probability p to an existing distribution,
holding constant the relative probabilities of other outcomes and overall mean.
Parameters
----------
distribution : [np.array]
Two element list containing a list of probabilities and a list of outcomes.
x : float
The new value to be added to the distribution.
p : float
The probability of the discrete outcome x occuring.
sort: bool
Whether or not to sort X before returning it
Returns
-------
X : np.array
Discrete points for discrete probability mass function.
pmf : np.array
Probability associated with each point in X.
Written by Matthew N. White
Latest update: 08 December 2015 by David Low
'''
X = np.append(x,distribution[1]*(1-p*x)/(1-p))
pmf = np.append(p,distribution[0]*(1-p))
if sort:
indices = np.argsort(X)
X = X[indices]
pmf = pmf[indices]
return([pmf,X])
def addDiscreteOutcome(distribution, x, p, sort = False):
'''
Adds a discrete outcome of x with probability p to an existing distribution,
holding constant the relative probabilities of other outcomes.
Parameters
----------
distribution : [np.array]
Two element list containing a list of probabilities and a list of outcomes.
x : float
The new value to be added to the distribution.
p : float
The probability of the discrete outcome x occuring.
Returns
-------
X : np.array
Discrete points for discrete probability mass function.
pmf : np.array
Probability associated with each point in X.
Written by Matthew N. White
Latest update: 11 December 2015
'''
X = np.append(x,distribution[1])
pmf = np.append(p,distribution[0]*(1-p))
if sort:
indices = np.argsort(X)
X = X[indices]
pmf = pmf[indices]
return([pmf,X])
def combineIndepDstns(*distributions):
'''
Given n lists (or tuples) whose elements represent n independent, discrete
probability spaces (probabilities and values), construct a joint pmf over
all combinations of these independent points.
Parameters
----------
distributions : [np.array]
Arbitrary number of distributions (pmfs). Each pmf is a list or tuple.
For each pmf, the first vector is probabilities and the second is values.
For each pmf, this should be true: len(X_pmf[0]) = len(X_pmf[1])
Returns
-------
List of arrays, consisting of:
P_out: np.array
Probability associated with each point in X_out.
X_out: np.array (as many as in *distributions)
Discrete points for the joint discrete probability mass function.
Written by Nathan Palmer
Latest update: 31 August 2015 by David Low
'''
# Very quick and incomplete parameter check:
for dist in distributions:
assert len(dist[0]) == len(dist[-1]), "len(dist[0]) != len(dist[-1])"
# Get information on the distributions
dist_lengths = ()
for dist in distributions:
dist_lengths += (len(dist[0]),)
number_of_distributions = len(distributions)
# Initialize lists we will use
X_out = []
P_temp = []
# Now loop through the distributions, tiling and flattening as necessary.
for dd,dist in enumerate(distributions):
# The shape we want before we tile
dist_newshape = (1,) * dd + (len(dist[0]),) + \
(1,) * (number_of_distributions - dd)
# The tiling we want to do
dist_tiles = dist_lengths[:dd] + (1,) + dist_lengths[dd+1:]
# Now we are ready to tile.
# We don't use the np.meshgrid commands, because they do not
# easily support non-symmetric grids.
Xmesh = np.tile(dist[1].reshape(dist_newshape),dist_tiles)
Pmesh = np.tile(dist[0].reshape(dist_newshape),dist_tiles)
# Now flatten the tiled arrays.
flatX = Xmesh.ravel()
flatP = Pmesh.ravel()
# Add the flattened arrays to the output lists.
X_out += [flatX,]
P_temp += [flatP,]
# We're done getting the flattened X_out arrays we wanted.
# However, we have a bunch of flattened P_temp arrays, and just want one
# probability array. So get the probability array, P_out, here.
P_out = np.ones_like(X_out[0])
for pp in P_temp:
P_out *= pp
assert np.isclose(np.sum(P_out),1),'Probabilities do not sum to 1!'
return [P_out,] + X_out
# ==============================================================================
# ============== Functions for generating state space grids ===================
# ==============================================================================
def makeGridExpMult(ming, maxg, ng, timestonest=20):
'''
Make a multi-exponentially spaced grid.
Parameters
----------
ming : float
Minimum value of the grid
maxg : float
Maximum value of the grid
ng : int
The number of grid points
timestonest : int
the number of times to nest the exponentiation
Returns
-------
points : np.array
A multi-exponentially spaced grid
Original Matab code can be found in Chris Carroll's
[Solution Methods for Microeconomic Dynamic Optimization Problems]
(http://www.econ2.jhu.edu/people/ccarroll/solvingmicrodsops/) toolkit.
Latest update: 01 May 2015
'''
if timestonest > 0:
Lming = ming
Lmaxg = maxg
for j in range(timestonest):
Lming = np.log(Lming + 1)
Lmaxg = np.log(Lmaxg + 1)
Lgrid = np.linspace(Lming,Lmaxg,ng)
grid = Lgrid
for j in range(timestonest):
grid = np.exp(grid) - 1
else:
Lming = np.log(ming)
Lmaxg = np.log(maxg)
Lstep = (Lmaxg - Lming)/(ng - 1)
Lgrid = np.arange(Lming,Lmaxg+0.000001,Lstep)
grid = np.exp(Lgrid)
return(grid)
# ==============================================================================
# ============== Uncategorized general functions ===================
# ==============================================================================
def calcWeightedAvg(data,weights):
'''
Generates a weighted average of simulated data. The Nth row of data is averaged
and then weighted by the Nth element of weights in an aggregate average.
Parameters
----------
data : numpy.array
An array of data with N rows of J floats
weights : numpy.array
A length N array of weights for the N rows of data.
Returns
-------
weighted_sum : float
The weighted sum of the data.
'''
data_avg = np.mean(data,axis=1)
weighted_sum = np.dot(data_avg,weights)
return weighted_sum
def getPercentiles(data,weights=None,percentiles=[0.5],presorted=False):
'''
Calculates the requested percentiles of (weighted) data. Median by default.
Parameters
----------
data : numpy.array
A 1D array of float data.
weights : np.array
A weighting vector for the data.
percentiles : [float]
A list of percentiles to calculate for the data. Each element should
be in (0,1).
presorted : boolean
Indicator for whether data has already been sorted.
Returns
-------
pctl_out : numpy.array
The requested percentiles of the data.
'''
if weights is None: # Set equiprobable weights if none were passed
weights = np.ones(data.size)/float(data.size)
if presorted: # Sort the data if it is not already
data_sorted = data
weights_sorted = weights
else:
order = np.argsort(data)
data_sorted = data[order]
weights_sorted = weights[order]
cum_dist = np.cumsum(weights_sorted)/np.sum(weights_sorted) # cumulative probability distribution
# Calculate the requested percentiles by interpolating the data over the
# cumulative distribution, then evaluating at the percentile values
inv_CDF = interp1d(cum_dist,data_sorted,bounds_error=False,assume_sorted=True)
pctl_out = inv_CDF(percentiles)
return pctl_out
def getLorenzShares(data,weights=None,percentiles=[0.5],presorted=False):
'''
Calculates the Lorenz curve at the requested percentiles of (weighted) data.
Median by default.
Parameters
----------
data : numpy.array
A 1D array of float data.
weights : numpy.array
A weighting vector for the data.
percentiles : [float]
A list of percentiles to calculate for the data. Each element should
be in (0,1).
presorted : boolean
Indicator for whether data has already been sorted.
Returns
-------
lorenz_out : numpy.array
The requested Lorenz curve points of the data.
'''
if weights is None: # Set equiprobable weights if none were given
weights = np.ones(data.size)
if presorted: # Sort the data if it is not already
data_sorted = data
weights_sorted = weights
else:
order = np.argsort(data)
data_sorted = data[order]
weights_sorted = weights[order]
cum_dist = np.cumsum(weights_sorted)/np.sum(weights_sorted) # cumulative probability distribution
temp = data_sorted*weights_sorted
cum_data = np.cumsum(temp)/sum(temp) # cumulative ownership shares
# Calculate the requested Lorenz shares by interpolating the cumulative ownership
# shares over the cumulative distribution, then evaluating at requested points
lorenzFunc = interp1d(cum_dist,cum_data,bounds_error=False,assume_sorted=True)
lorenz_out = lorenzFunc(percentiles)
return lorenz_out
def calcSubpopAvg(data,reference,cutoffs,weights=None):
'''
Calculates the average of (weighted) data between cutoff percentiles of a
reference variable.
Parameters
----------
data : numpy.array
A 1D array of float data.
reference : numpy.array
A 1D array of float data of the same length as data.
cutoffs : [(float,float)]
A list of doubles with the lower and upper percentile bounds (should be
in [0,1]).
weights : numpy.array
A weighting vector for the data.
Returns
-------
slice_avg
The (weighted) average of data that falls within the cutoff percentiles
of reference.
'''
if weights is None: # Set equiprobable weights if none were given
weights = np.ones(data.size)
# Sort the data and generate a cumulative distribution
order = np.argsort(reference)
data_sorted = data[order]
weights_sorted = weights[order]
cum_dist = np.cumsum(weights_sorted)/np.sum(weights_sorted)
# For each set of cutoffs, calculate the average of data that falls within
# the cutoff percentiles of reference
slice_avg = []