diff --git a/examples/gss_divergent_optima/gss_divergent_optima.py b/examples/gss_divergent_optima/gss_divergent_optima.py index 5a6cf20d7..969f3f9aa 100644 --- a/examples/gss_divergent_optima/gss_divergent_optima.py +++ b/examples/gss_divergent_optima/gss_divergent_optima.py @@ -23,7 +23,8 @@ """ demography = fwdpy11.ForwardDemesGraph.from_demes( - yaml, burnin=10*N, burnin_is_exact=True) + yaml, burnin=10 * N + 200, burnin_is_exact=True +) moving_optimum_deme_0 = fwdpy11.GSSmo( [ @@ -70,8 +71,7 @@ # Mapping of trait (genetic) value to fitness gvalue_to_fitness=moving_optimum_deme_0, ), - fwdpy11.Additive(ndemes=2, scaling=2, - gvalue_to_fitness=moving_optimum_deme_1), + fwdpy11.Additive(ndemes=2, scaling=2, gvalue_to_fitness=moving_optimum_deme_1), ], } @@ -79,7 +79,7 @@ pop = fwdpy11.DiploidPopulation([N, N], 1.0) rng = fwdpy11.GSLrng(1010) fwdpy11.evolvets(rng, pop, params, 100) -assert pop.generation == 10*N + 200 +assert pop.generation == 10 * N + 200 md = np.array(pop.diploid_metadata, copy=False) df = pd.DataFrame.from_records(md[["deme", "g", "w"]]) g = df.groupby(["deme"])