-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandler.py
36 lines (30 loc) · 1.16 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os, glob
import logging
from typing import Generator, Union
import runpod
from sentence_transformers import SentenceTransformer
import json
import numpy as np
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
class NumpyArrayEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def load_model():
model_repo = os.getenv("MODEL_REPO", "sentence-transformers/all-mpnet-base-v2")
models_cache = os.getenv("MODELS_CACHE", "/runpod-volume/sentence-transformers-cache/models")
model = SentenceTransformer(model_repo, cache_folder=models_cache)
return model
def handler(job):
job_input = job['input']
sentences = job_input.pop("sentences")
normalize_embeddings = job_input.pop("normalize_embeddings", False)
model = load_model()
embeddings = model.encode(sentences, normalize_embeddings=normalize_embeddings)
encoded_embeddings = json.dumps(embeddings, cls=NumpyArrayEncoder)
decoded_embeddings = json.loads(encoded_embeddings)
yield decoded_embeddings
runpod.serverless.start({
"handler": handler,
})