-
Notifications
You must be signed in to change notification settings - Fork 0
/
HW2Problem4Code.py
444 lines (316 loc) · 12 KB
/
HW2Problem4Code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 7 00:53:27 2021
@author: Moon
"""
# Import of the pyomo module
from pyomo.environ import *
import numpy as np
import math
#get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# Creation of a Concrete Model
Optimal_values_I=[]
result_w=[]
Optimal_values=[]
M=100000
B_list=list(range(75000,150001,25000))
for B in B_list:
model_I = ConcreteModel()
# Initialize state and actions
model_I.i = Set(initialize=['1','2','3'], doc='State i')
model_I.j = Set(initialize=['1','2','3'], doc='State j')
model_I.a = Set(initialize=['a1','a2', 'a3'], doc='Action')
# User cost
model_I.u_cost = Param(model_I.i, initialize={'1':10,'2':20,'3':30}, doc='UserCost')
# Action costs
d_cost = {
('a1','1'): 0.0,
('a1','2'): 0.0,
('a1','3'): 0.0,
('a2','1'): 5.0,
('a2','2'): 10.0,
('a2','3'): 15.0,
('a3','1'): 20.0,
('a3','2'): 20.0,
('a3','3'): 20.0,
}
model_I.a_cost = Param(model_I.a, model_I.i, initialize=d_cost, doc='ActionCost')
# Transition Propability
P_DN={
('1','1') : 0.5,
('1','2') : 0.5,
('1','3') : 0,
('2','1') : 0,
('2','2') : 0.5,
('2','3') : 0.5,
('3','1') : 0,
('3','2') : 0,
('3','3') : 1,
}
P_RM={
('1','1'):0.8,
('1','2'):0.2,
('1','3'):0,
('2','1'):0,
('2','2'):0.8,
('2','3'):0.2,
('3','1'):0,
('3','2'):0,
('3','3'):1,
}
P_Resurf={
('1','1'): 1.0,
('1','2'): 0,
('1','3'): 0,
('2','1'): 0.8,
('2','2'): 0.2,
('2','3'): 0,
('3','1'): 0.6,
('3','2'): 0.4,
('3','3'): 0,
}
P={"a1":P_DN,"a2":P_RM,"a3":P_Resurf}
model_I.P = Param(model_I.a, initialize=P, doc='Transition probability')
model_I.w = Var(model_I.a, model_I.i, bounds=(0,1), doc='% of the pavement with certain action')
# Define constraints
def const_1(model_I,a,i):
print(model_I.w[a,i] >= 0)
return model_I.w[a,i] >= 0
model_I.const_1 = Constraint(model_I.a, model_I.i, rule=const_1, doc='Wai>=0')
def const_2(model_I):
sum_wai2 = 0.0
for ka in model_I.a:
for ki in model_I.i:
sum_wai2 += model_I.w[ka,ki]
print(sum_wai2==1)
return sum_wai2==1
model_I.const_2 = Constraint(rule=const_2,doc='w_constraints = 1')
model_I.const_2.display()
def const_3(model_I,i):
sum_wai3=0
sum_pw3=0
for ka in model_I.a:
sum_wai3+=model_I.w[ka,i]
for kj in model_I.j:
sum_pw3 += model_I.P[ka][kj,i]*model_I.w[ka,kj]
#return sum_wai==sum_pw
#print(sum_pw)
#print(sum_wai)
print(sum_wai3 ==sum_pw3)
return sum_wai3 == sum_pw3
model_I.const_3 = Constraint(model_I.i, rule=const_3,doc='sum_wai==sum_pw')
def const_4(model_I):
sum_cw = 0.0
for ka in model_I.a:
for ki in model_I.i:
sum_cw += model_I.w[ka,ki]*model_I.a_cost[ka,ki]
print(sum_cw*M <=B)
return sum_cw*M<=B
model_I.const_4 = Constraint(rule=const_4,doc='w_constraints ')
def const_5(model_I,i):
sum_wai=0
for ka in model_I.a:
sum_wai+=model_I.w[ka,i]
print(sum_wai>= 0.1)
return sum_wai >= 0.0
model_I.const_5 = Constraint(model_I.i,rule=const_5,doc='w_constraints >= 0.2')
def const_6(model_I,i):
sum_wai=0
for ka in model_I.a:
sum_wai+=model_I.w[ka,i]
#print(sum_wai<= 0)
return sum_wai <= 1
model_I.const_6 = Constraint(model_I.i,rule=const_6,doc='w_constraints <= 1.0')
def objective_rule(model_I):
obj=0
for ki in model_I.i:
for ka in model_I.a:
obj+=model_I.w[ka,ki]*(model_I.u_cost[ki] + model_I.a_cost[ka,ki])
#print(obj*M)
return obj*M
model_I.objective = Objective(rule=objective_rule, sense=minimize, doc='Define objective function')
def pyomo_postprocess(options=None, instance=None, results=None):
model_I.w.display()
# This is an optional code path that allows the script to be run outside of
# pyomo command-line. For example: python transport.py
if __name__ == '__main__':
import pyomo.environ
from pyomo.opt import SolverFactory
opt = SolverFactory("glpk")
results = opt.solve(model_I)
# Printout results
results.write()
print("\nDisplaying Solution\n" + '-'*60)
pyomo_postprocess(None, model_I, results)
print(model_I.objective())
# Save the optimal results
for ka in model_I.a:
for ki in model_I.i:
w = value(model_I.w[ka,ki])
result_w.append([B,ka,ki,w])
result_df=pd.DataFrame(result_w,columns=['B','ka','ki','w'])
result_df['wai']=result_df['ka']+result_df['ki']
# Creation of a Concrete Model
for T in range (25,201,25):
model_F = ConcreteModel()
T0=T-1
model_F.i = Set(initialize=['1','2','3'], doc='i')
model_F.j = Set(initialize=['1','2','3'], doc='j')
model_F.a = Set(initialize=['a1','a2', 'a3'], doc='a')
model_F.t = Set(initialize=np.arange(T)+1, doc='states')
model_F.t0 = Set(initialize=np.arange(T0)+1, doc='states')
model_F.u_cost = Param(model_F.i, initialize={'1':10,'2':20,'3':30}, doc='user_cost')
model_F.a_cost = Param(model_F.a, model_F.i, initialize=d_cost, doc='action_cost[s,a]')
model_F.P = Param(model_F.a, initialize=P, doc='tr_probability_routine_maintenance P_ji')
model_F.w = Var(model_F.a, model_F.i,model_F.t, bounds=(0,1), doc='% of the pavement with certain action')
def const_1(model,a,i,t):
return model.w[a,i,t] >= 0
model_F.const_1 = Constraint(model_F.a, model_F.i, model_F.t, rule=const_1, doc='Wai>=0')
def const_2(model_F,t):
sum_wai2 = 0.0
for ka in model_F.a:
for ki in model_F.i:
sum_wai2 += model_F.w[ka,ki,t]
return sum_wai2==1.0
model_F.const_2 = Constraint(model_F.t,rule=const_2,doc='sum_wai2==1')
def const_3(model_F,i,t0):
sum_wai3=0
sum_pw3=0
for ka in model_F.a:
sum_wai3+=model_F.w[ka,i,t0+1]
for kj in model_F.j:
sum_pw3 += model_F.P[ka][kj,i]*model_F.w[ka,kj,t0]
return sum_wai3 == sum_pw3
model_F.const_3 = Constraint(model_F.i,model_F.t0,rule=const_3,doc='sum_wai==sum_pw')
def const_4(model_F,t):
sum_cw = 0.0
for ka in model_F.a:
for ki in model_F.i:
sum_cw += model_F.w[ka,ki,t]*model_F.a_cost[ka,ki]
return sum_cw*M <= B
model_F.const_4 = Constraint(model_F.t,rule=const_4,doc='w_constraints = 1')
def const_5(model_F,i,t):
sum_wai5=0
for ka in model_F.a:
sum_wai5+=model_F.w[ka,i,t]
return sum_wai5 >= 0.0
model_F.const_5 = Constraint(model_F.i,model_F.t,rule=const_5,doc='w_constraints >= 0')
def const_6(model_F,i,t):
sum_wai6=0
for ka in model_F.a:
sum_wai6+=model_F.w[ka,i,t]
return sum_wai6 <= 1
model_F.const_6 = Constraint(model_F.i,model_F.t,rule=const_6,doc='w_constraints <= 1.0')
def const_7(model_F,i):
sum_wai7=0
for ka in model_F.a:
sum_wai7+=model_F.w[ka,i,1]
if i == '1':
return sum_wai7 == 0
elif i == '2':
return sum_wai7 == 1
elif i == '3':
return sum_wai7 == 0
model_F.const_7 = Constraint(model_F.i,rule=const_7,doc='boundary1')
w_t={
('a1', '1'):0.0,
('a1', '2'):0.043,
('a1', '3'):0.872,
('a2', '1'):0.064,
('a2', '2'):0.0,
('a2', '3'):0.0,
('a3', '1'):0.0,
('a3', '2'):0.0,
('a3', '3'):0.021,
}
def const_8(model_F,i):
sum_wai8=0
sum_pw8=0
for ka in model_F.a:
sum_wai8+=model_F.w[ka,i,T]
sum_pw8 += value(model_I.w[ka,i])
#print(sum_wai8 ==sum_pw8)
return sum_wai8 == sum_pw8
model_F.const_8 = Constraint(model_F.i, rule=const_8, doc='boundary2')
def objective_rule(model_F):
obj=0
for kt in model_F.t:
for ka in model_F.a:
for ki in model_F.i:
obj+=(model_F.w[ka,ki,kt])*(model_F.u_cost[ki] + model_F.a_cost[ka,ki])*(0.97)**(kt)
return obj*M + (0.97**T/(1-0.97))*model_I.objective()
model_F.objective = Objective(rule=objective_rule, sense=minimize, doc='Define objective function')
## Display of the output ##
def pyomo_postprocess(options=None, instance=None, results=None):
model_F.w.display()
try:
if __name__ == '__main__':
# This emulates what the pyomo command-line tools does
import pyomo.environ
from pyomo.opt import SolverFactory
opt = SolverFactory("glpk",validate=False)
results = opt.solve(model_F)
#sends results to stdout
results.write()
print("\nDisplaying Solution\n" + '-'*60)
pyomo_postprocess(None, model_F, results)
objective_value_F = value(model_F.objective)
objective_value_I = value(model_I.objective)
except:
objective_value_F= np.NAN
objective_value_I= np.NAN
Optimal_values.append([T, B, objective_value_F, objective_value_I])
df_optimal=pd.DataFrame(Optimal_values,columns=["T","B","ObjectiveValueF", "ObjectiveValueI"])
df_optimal.to_csv("df_optimal_problem4.csv")
# Plot for different budget and optimal costs
import matplotlib.pyplot as plt
for B in B_list:
fig,ax=plt.subplots(figsize=(10,6))
df_plot=df_optimal[df_optimal['B']==B]
plt.plot(df_plot["T"],df_plot['ObjectiveValueF'])
plt.xlabel('Short Term Horizon in Years', size="16")
plt.ylabel('Optimal Cost',size="16")
plt.title('Finite Horizon Problem, Budget :'+str(B),size="16" )
plt.tight_layout()
plt.savefig(str(B)+"variation.png",dpi=500)
plt.show()
# Optimal cost vaition at t=200 short term horizon
# Finite Horizon
Th=200
fig2,ax2=plt.subplots(figsize=(10,6))
ax2.set_xlim(xmin=70000, xmax=110000)
df_plotT=df_optimal[df_optimal['T']==Th]
plt.plot(df_plotT["B"],df_plotT['ObjectiveValueF'])
plt.xlabel('Budget', size="16")
plt.ylabel('Optimal Cost',size="16")
plt.title('Finite Horizon Problem, Time :'+str(Th),size="16" )
plt.tight_layout()
plt.savefig(str(Th)+"variation.png",dpi=500)
plt.show()
# Finite Horizon
fig3,ax3=plt.subplots(figsize=(10,6))
ax3.set_xlim(xmin=70000, xmax=110000)
df_plotT=df_optimal[df_optimal['T']==Th]
plt.plot(df_plotT["B"],df_plotT['ObjectiveValueI'])
plt.xlabel('Budget', size="16")
plt.ylabel('Optimal Cost',size="16")
plt.title('Infinte Horizon Problem, Time :'+str(Th),size="16" )
plt.tight_layout()
plt.savefig(str(Th)+"INFvariation.png",dpi=500)
plt.show()
fig,ax=plt.subplots(figsize=(10,6))
# Optimal solutions for InFinite Horizon for different budget
for B in B_list:
print(B)
df_plot_w=result_df[result_df['B']==B]
ax.plot(df_plot_w["wai"],df_plot_w['w'],'s-',label=str(B))
plt.xlabel('action and state', size="16")
plt.ylabel('Wai',size="16")
plt.title('Infinte Horizon Problem',size="16" )
plt.legend()
plt.tight_layout()
plt.savefig("wa_variation.png",dpi=500)
plt.show()