Skip to content

mooniswan/level1-imageclassification-cv-10

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sketch Image Classification

Overview

2024.09.10 ~ 2024.09.26

This project focuses on classifying ImageNet-Sketch images as part of a private competition organized by Naver Connect Foundation and Upstage.

Contributors

김기수 문채원 안주형 은의찬 이재훈 장지우






Experimental Techniques

We experimented with various techniques to improve performance:

  • Augmentation: Aspect ratio, CLAHE, grayscale, flip, rotation, mixup, cutmix, Text-to-Image
  • Optimization: Pseudo labeling, label smoothing, Error-Driven Learning, Progressive resizing, Model Soups, TTA
  • Visualization: Confusion matrix, error-class visualization
  • Ensemble: Soft voting, Hard voting, Ensemble of Ensembles, stacking, snapshot

Folder Structure

level1-cv-10
├── data/
│   ├── train/
│   ├── test/
│   ├── train.csv
│   └── test.csv
├── src/
│   ├── args.py
│   ├── dataset.py
│   ├── transforms.py
│   ├── model.py
│   ├── loss.py
│   ├── trainer.py
├── train.py
├── train.sh
├── inference.py
├── inference.sh
├── ensemble.py
├── requirements.txt
├── .gitignore
└── README.md
  • data/train/: 15,021 training images across 500 classes (29-31 images per class)
  • data/test/: 10,014 test images

Getting Started

Requirements

Install the required packages:

pip install -r requirements.txt

Hyperparameters

The following arguments can be adjusted via command line to experiment with different settings:

argument option default Description
traindata_dir ./data/train Path to training data dir
traindata_info_file ./data/train.csv Name of the training info file
testdata_dir ./data/test Path to test data dir
testdata_info_file ./data/test.csv Name of the test info file
val_ratio 0.2 Validation data ratio
model_type timm Model type
model_name swin_s3_base_224 Model name
pretrained True Use pretrained model
num_classes 500 Number of classes
device cuda Device to use(gpu or cpu)
batch_size 64 Batch size
num_workers 4 Number of workers
epochs 10 Number of epochs
lr 0.001 Learning rate
weight_decay 0.0001 Weight decay coefficient
label_smoothing 0.0 Label smoothing factor
model_dir ./train_result Path to save training results (.pt)
output_dir ./output Path to save prediction results (.csv)

Training Step

To train a single model, run following command.

python train.py --model {model_name} --batch_size {batch_size} --lr {learning rate} --epochs {epochs} --label_smoothing {label smoothing}

To train multiple models, run following shell script file.

bash train.sh

Inference Step

To test model, run following command.

python inference.py --model_name {model_name}

Ensemble

To perform ensemble prediction:

python ensemble.py

About

sketch image classification by cv-10

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.3%
  • Shell 2.7%