forked from goodfeli/adversarial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_samples.py
50 lines (45 loc) · 1.75 KB
/
show_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from pylearn2.utils import serial
import sys
_, model_path = sys.argv
model = serial.load(model_path)
from pylearn2.gui.patch_viewer import make_viewer
space = model.generator.get_output_space()
from pylearn2.space import VectorSpace
from pylearn2.config import yaml_parse
import numpy as np
match_train = True
if match_train:
dataset = yaml_parse.load(model.dataset_yaml_src)
grid_shape = None
if isinstance(space, VectorSpace):
# For some reason format_as from VectorSpace is not working right
samples = model.generator.sample(100).eval()
if match_train:
grid_shape = (10, 20)
matched = np.zeros((samples.shape[0] * 2, samples.shape[1]))
X = dataset.X
for i in xrange(samples.shape[0]):
matched[2 * i, :] = samples[i, :].copy()
dists = np.square(X - samples[i, :]).sum(axis=1)
j = np.argmin(dists)
matched[2 * i + 1, :] = X[j, :]
samples = matched
is_color = samples.shape[-1] % 3 == 0 and samples.shape[-1] != 48 * 48
else:
total_dimension = space.get_total_dimension()
import numpy as np
num_colors = 1
if total_dimension % 3 == 0:
num_colors = 3
w = int(np.sqrt(total_dimension / num_colors))
from pylearn2.space import Conv2DSpace
desired_space = Conv2DSpace(shape=[w, w], num_channels=num_colors, axes=('b',0,1,'c'))
samples = space.format_as(batch=model.generator.sample(100),
space=desired_space).eval()
is_color = samples.shape[-1] == 3
print (samples.min(), samples.mean(), samples.max())
# Hack for detecting MNIST [0, 1] values. Otherwise we assume centered images
if samples.min() >0:
samples = samples * 2.0 - 1.0
viewer = make_viewer(samples, grid_shape=grid_shape, is_color=is_color)
viewer.show()