-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
114 lines (95 loc) · 3.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
""" utility functions"""
import re
import os
from os.path import basename
import subprocess
import gensim
import torch
from torch import nn
from evaluate import eval_rouge
from ConfManager import ConfManager
def count_data(path):
""" count number of data in the given path"""
matcher = re.compile(r'[0-9]+\.json')
match = lambda name: bool(matcher.match(name))
names = os.listdir(path)
n_data = len(list(filter(match, names)))
return n_data
PAD = 0
UNK = 1
START = 2
END = 3
def make_vocab(wc, vocab_size):
word2id, id2word = {}, {}
word2id['<pad>'] = PAD
word2id['<unk>'] = UNK
word2id['<start>'] = START
word2id['<end>'] = END
for i, (w, _) in enumerate(wc.most_common(vocab_size), 4):
word2id[w] = i
return word2id
def make_embedding(id2word, w2v_file, initializer=None):
attrs = basename(w2v_file).split('.') # word2vec.{dim}d.{vsize}k.bin
w2v = gensim.models.Word2Vec.load(w2v_file).wv
vocab_size = len(id2word)
emb_dim = int(attrs[-3][:-1])
embedding = nn.Embedding(vocab_size, emb_dim).weight
if initializer is not None:
initializer(embedding)
oovs = []
with torch.no_grad():
for i in range(len(id2word)):
# NOTE: id2word can be list or dict
if i == START:
embedding[i, :] = torch.Tensor(w2v['<s>'])
elif i == END:
embedding[i, :] = torch.Tensor(w2v[r'<\s>'])
elif id2word[i] in w2v:
embedding[i, :] = torch.Tensor(w2v[id2word[i]])
else:
oovs.append(i)
return embedding, oovs
def get_gpu_memory_map():
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.free,utilization.gpu',
'--format=csv,nounits,noheader'
], encoding='utf-8')
gpu_info = [eval(x) for x in result.strip().split('\n')]
gpu_info = dict(zip(range(len(gpu_info)), gpu_info))
sorted_gpu_info = sorted(gpu_info.items(), key=lambda kv: kv[1][0], reverse=True)
sorted_gpu_info = sorted(sorted_gpu_info, key=lambda kv: kv[1][1])
print(f'gpu_id, (mem_left, util): {sorted_gpu_info}')
return sorted_gpu_info
cm = ConfManager()
def calc_official_rouge(dec_dir, name):
if name == 'val':
ref_dir = cm.REF04
else:
ref_dir = cm.REF11
print(f'{name}: ref_dir={ref_dir}')
dec_pattern = r'(\d+).dec'
ref_pattern = '#ID#.[A-Z].ref'
output = eval_rouge(dec_pattern, dec_dir, ref_pattern, ref_dir)
# print(output)
for line in output.split('\n'):
if line.startswith('1 ROUGE-1 Average_F'):
r1 = float(line.split()[3])
if line.startswith('1 ROUGE-2 Average_F'):
r2 = float(line.split()[3])
if line.startswith('1 ROUGE-L Average_F'):
rl = float(line.split()[3])
if line.startswith('1 ROUGE-SU4 Average_F'):
rsu4 = float(line.split()[3])
R = {'R-1': r1, 'R-2': r2, 'R-L': rl, 'R-SU4': rsu4}
print(R, '\n')
return R
def print_config(config, logger=None):
config = vars(config)
info = "Running with the following configs:\n"
for k, v in config.items():
info += "\t{} : {}\n".format(k, str(v))
if not logger:
print("\n" + info + "\n")
else:
logger.info("\n" + info + "\n")