forked from paulgp/applied_metrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsyllabus-2019.tex
136 lines (101 loc) · 4.56 KB
/
syllabus-2019.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage[left=1in,top=1in,right=1in,bottom=1in,headheight=3ex,headsep=3ex]{geometry}
\newcommand{\blankline}{\quad\pagebreak[2]}
\title{Econometrics of Panel Data}\author{Chris Conlon}
\date{Spring 2019}
\usepackage[sc]{mathpazo}
\linespread{1.05} % Palatino needs more leading (space between lines)
\usepackage[T1]{fontenc}
\usepackage[mmddyyyy]{datetime}% http://ctan.org/pkg/datetime
\usepackage{advdate}% http://ctan.org/pkg/advdate
\newdateformat{syldate}{\twodigit{\THEMONTH}/\twodigit{\THEDAY}}
\newsavebox{\THURSDAY}\savebox{\THURSDAY}{Tue}% Mon
\newcommand{\week}[1]{%
% \cleardate{mydate}% Clear date
% \newdate{mydate}{\the\day}{\the\month}{\the\year}% Store date
\paragraph*{\kern-2ex\quad #1, \syldate{\today}:}% Set heading \quad #1
% \setbox1=\hbox{\shortdayofweekname{\getdateday{mydate}}{\getdatemonth{mydate}}{\getdateyear{mydate}}}%
\ifdim\wd1=\wd\THURSDAY
\AdvanceDate[7]
\else
\AdvanceDate[7]
\fi%
}
\usepackage{setspace}
\usepackage{multicol}
%\usepackage{indentfirst}
\usepackage{fancyhdr,lastpage}
\usepackage{url}
\pagestyle{fancy}
\usepackage{hyperref}
\usepackage{lastpage}
\usepackage{amsmath}
\usepackage{layout}
\lhead{}
\chead{}
\rhead{\footnotesize Applied Econometrics- Fall 2019}
\lfoot{}
\cfoot{\small \thepage/\pageref*{LastPage}}
\rfoot{}
\usepackage{array, xcolor}
\usepackage{color,hyperref}
\definecolor{clemsonorange}{HTML}{EA6A20}
\hypersetup{colorlinks,breaklinks,
linkcolor=clemsonorange,urlcolor=clemsonorange,
anchorcolor=clemsonorange,citecolor=black}
\begin{document}
\maketitle
\blankline
\begin{tabular*}{.93\textwidth}{@{\extracolsep{\fill}}lr}
E-mail: \texttt{cconlon@stern.nyu.edu} & Web: \href{http://chrisconlon.org}{\tt\bf chrisconlon.org/appliedmetrics} \\
Office Hours: Tues/Thurs 11-12 (or by appointment) & Class Hours: Friday 1:00-4:00 \\
Office: KMC 7-76 & Class Room: TBA \\
& \\
\hline
\end{tabular*}
\vspace{10 mm}
\section*{Course Description}
This is a second Ph.D. course in applied econometrics though advanced undergraduates are welcome. The focus is on microeconometrics and panel data. It is a continuation of Prof. Scott's course, though once the basics are covered we will have more opportunity to explore topics related to student intrest.
\begin{description}
\item[Problem Sets:] I have designed the problem sets in R, though you are free to use whichever statistical software you would like.
\end{description}
\section*{Books}
I will follow two main textbooks.
\begin{itemize}
\item Greene (2017). \textit{Econometric Analysis}. ISBN: 0134461363
\item Tibshirani, Hastie, Friedman (2016), \textit{The Elements of Statistical Learning}. ISBN: 0387848576. Available online at \url{https://web.stanford.edu/~hastie/Papers/ESLII.pdf}.
\end{itemize}
\section*{Course Policy}
You are expected to attend every lecture and it is expected that you have done the reading BEFORE the class. This is a Ph.D. course which means you will be expected to read a lot on your own.
\subsection*{Grading Policy}
\begin{itemize}
\item 60\% of your grade will be performance on 6 problem sets (10\% each).
\item 30\% of your grade will be performance on the final exam.
\item 10\% of your grade will be participation in class.
\end{itemize}
\subsection*{Academic Dishonesty Policy}
Don't cheat. It is helpful to work with a partner on debugging code, but my expectation is that assignments are 100\% your own work (including computer code).
\newpage
\SetDate[01/02/2019]
\week{Week 01} Introduction to Time Series Data
\week{Week 02} Panel Data I : Fixed Effects, Random Effects, Clustering\\
\textit{PS 1 Due}\\
\week{Week 03} Maximum Likelihood and Duration Models\\
\week{Week 04} Discrete Choice and Multinomial Choice\\
\textit{PS 2 Due}
\week{Week 05} Bayesian Methods and MCMC\\
\week{Week 06} Panel Data II : Dynamic Panel, Causal FE, Empirical Bayes, Hierarchical Models
\textit{PS 3 Due}
\week{Break} \textbf{SPRING BREAK (3/18-3/24)}
\week{Week 07} Treatment Effects and Potential Outcomes\\
\textit{PS 4 Due}
\week{Week 08} Treatment Effects and Potential Outcomes
\week{Week 09} Nonparametric Methods (Kernels, Nearest Neighbors, Bootstrap)\\
\textit{PS 5 Due}\\
\week{Week 10} Nonparametric Methods (Kernels, Nearest Neighbors, Bootstrap)
\week{Week 11} Machine Learning: Model Selection and Regularization (LASSO, RIDGE, PCA)\\
\week{Week 12} Topics based on interest: Duration Models, Dynamic Discrete Choice, Tree Models, Model Averaging Boosting/Bagging, etc.\\
\textit{PS 6 Due}
\week{Week 13} Topics based on interest (continued)
\end{document}