-
Notifications
You must be signed in to change notification settings - Fork 0
/
submission_script.py
415 lines (330 loc) · 20.7 KB
/
submission_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from pathlib import Path
import numpy as np
import pandas as pd
import os, gc, time
import tensorflow as tf
from tensorflow import keras
from nltk.stem import PorterStemmer, LancasterStemmer, SnowballStemmer, WordNetLemmatizer
from gensim import models
import random
import time
# Any results you write to the current directory are saved as output.
RANDOM_STATE = 42
TRAIN_DATA_PATH = '../input/quora-insincere-questions-classification/train.csv'
TEST_DATA_PATH = '../input/quora-insincere-questions-classification/test.csv'
GLOVE_PATH = Path('../input/quora-insincere-questions-classification/embeddings/glove.840B.300d/glove.840B.300d.txt')
PARAGRAM_PATH = Path('../input/quora-insincere-questions-classification/embeddings/paragram_300_sl999/paragram_300_sl999.txt')
WIKI_NEWS_PATH = Path('../input/quora-insincere-questions-classification/embeddings/wiki-news-300d-1M/wiki-news-300d-1M.vec')
GOOGLE_NEWS_PATH = Path('../input/quora-insincere-questions-classification/embeddings/GoogleNews-vectors-negative300/GoogleNews-vectors-negative300.bin')
LABEL_COLUMNS = ['target']
contraction_mapping = {"ain't": "is not", "aren't": "are not","can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not",
"didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not",
"he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will",
"how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am",
"I've": "I have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am", "i've": "i have",
"isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have","it's": "it is",
"let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have","mightn't": "might not","mightn't've": "might not have",
"must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have",
"o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not",
"shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have",
"she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have","so's": "so as",
"this's": "this is","that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would",
"there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they would", "they'd've": "they would have",
"they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not",
"we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have",
"weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have",
"when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will",
"who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have",
"won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all",
"y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all are","y'all've": "you all have","you'd": "you would",
"you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have" }
punct = "/-'?!.,#$%\'()*+-/:;<=>@[\\]^_`{|}~" + '""“”’' + '∞θ÷α•à−β∅³π‘₹´°£€\×™√²—–&' # for adding space before and after in words containing punct
punct_mapping = {"‘": "'", "₹": "e", "´": "'", "°": "", "€": "e", "™": "tm", "√": " sqrt ", "×": "x",
"²": "2", "—": "-", "–": "-", "’": "'", "_": "-", "`": "'", '“': '"', '”': '"', '“': '"',
"£": "e", '∞': 'infinity', 'θ': 'theta', '÷': '/', 'α': 'alpha', '•': '.', 'à': 'a',
'−': '-', 'β': 'beta', '∅': '', '³': '3', 'π': 'pi', } # for glove
mispell_mapping = {'colour': 'color', 'centre': 'center', 'favourite': 'favorite', 'travelling': 'traveling', 'counselling': 'counseling',
'theatre': 'theater', 'cancelled': 'canceled', 'labour': 'labor', 'organisation': 'organization', 'wwii': 'world war 2',
'citicise': 'criticize', 'youtu ': 'youtube ', 'Qoura': 'Quora', 'sallary': 'salary', 'Whta': 'What', 'narcisist': 'narcissist',
'howdo': 'how do', 'whatare': 'what are', 'howcan': 'how can', 'howmuch': 'how much', 'howmany': 'how many', 'whydo': 'why do',
'doI': 'do I', 'theBest': 'the best', 'howdoes': 'how does', 'mastrubation': 'masturbation', 'mastrubate': 'masturbate',
"mastrubating": 'masturbating', 'pennis': 'penis', 'Etherium': 'Ethereum', 'narcissit': 'narcissist', 'bigdata': 'big data',
'2k17': '2017', '2k18': '2018', 'qouta': 'quota', 'exboyfriend': 'ex boyfriend', 'airhostess': 'air hostess', "whst": 'what',
'watsapp': 'whatsapp', 'demonitisation': 'demonetization', 'demonitization': 'demonetization', 'demonetisation': 'demonetization',
'pokémon': 'pokemon'}
def clean_special_chars(text, punct=punct, mapping=punct_mapping):
for p in mapping:
text = text.replace(p, mapping[p])
for p in punct:
text = text.replace(p, f' {p} ') # f is formatted string literal sifn
specials = {'\u200b': ' ', '…': ' ... ', '\ufeff': '', 'करना': '', 'है': ''} # Other special characters
for s in specials:
text = text.replace(s, specials[s])
return text
def correct_spelling(text, mapping=mispell_mapping):
for word in mapping.keys():
text = text.replace(word, mapping[word])
return text
def load_train_data(file_path, train_column, label_columns):
print('Loading train data...')
data_frame = pd.read_csv(file_path)
return data_frame[train_column].tolist(), data_frame[label_columns].values
def load_test_data(file_path, train_column):
print('Loading test data...')
data_frame = pd.read_csv(file_path)
return data_frame[train_column].tolist(), data_frame['qid']
def clean_contractions(text, mapping=contraction_mapping):
specials = ["’", "‘", "´", "`"]
for s in specials:
text = text.replace(s, "'")
text_new = []
for t in text.split(' '):
if t.lower() in mapping:
t_new = mapping[t.lower()]
if t.isupper():
t_new = t_new.upper()
elif t[0].isupper() and len(t_new) > 1:
t_new = t_new[0].upper() + t_new[1:]
text_new.append(t_new)
else:
text_new.append(t)
return ' '.join(text_new)
def index_word_embeddings(embeddings_path, embedding_dim, skip_first_line=False):
print('Indexing word embeddings from', str(embeddings_path), '...')
embeddings_index = {}
skipped = False
with open(embeddings_path, encoding='utf-8', errors='ignore') as f:
for line in f:
if skip_first_line and not skipped:
skipped = True
continue
splitted = line.split(' ')
phrase_len = len(splitted)-embedding_dim
coefs = ' '.join(splitted[phrase_len:len(splitted)])
phrase_parts = splitted[0:phrase_len]
if set(phrase_parts) == set(['']):
phrase_parts.append('')
word = ' '.join(phrase_parts)
coefs = np.fromstring(coefs, 'f', sep=' ')
assert coefs.size == embedding_dim
embeddings_index[word] = coefs
print('Found', len(embeddings_index), 'word vectors.')
return embeddings_index
def index_keyed_embeddings(keyed_vectors):
print('Indexing embeddings from keyed vectors...')
embedding_index = {}
for word, vector in zip(keyed_vectors.index2word, keyed_vectors.vectors):
embedding_index[word] = vector
return embedding_index
# creates Tokenizer instance and fits it
def fit_tokenizer(X_texts, hparams):
print('Fitting tokenizer...')
tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=hparams['max_words'], filters=hparams['tokenizer_filters'],
lower=hparams['tokenizer_lower'], split=hparams['tokenizer_split'],
char_level=hparams['tokenizer_char_level'], oov_token=hparams['tokenizer_oov_token'])
tokenizer.fit_on_texts(X_texts)
return tokenizer
def prepare_embedding_matrix(max_words, embedding_dim, word_index, embeddings_index, hparams, lower_only=False):
print('Preparing embedding matrix...')
np.random.seed(hparams['random_state'])
porter = PorterStemmer()
lancaster = LancasterStemmer()
snowball = SnowballStemmer('english')
lemmatizer = WordNetLemmatizer()
count = 0
embedding_matrix = np.zeros((max_words, embedding_dim))
random_vector = np.random.random(embedding_dim)
for word, i in word_index.items():
if i >= max_words:
continue
if word in embeddings_index and word.lower() not in embeddings_index:
embeddings_index[word.lower()] = embeddings_index[word]
embedding_vector = embeddings_index.get(word.lower()) if lower_only else embeddings_index.get(word)
# https://www.kaggle.com/wowfattie/3rd-place
if embedding_vector is None:
embedding_vector = embeddings_index.get(word.lower())
if embedding_vector is None:
embedding_vector = embeddings_index.get(word.upper())
if embedding_vector is None:
embedding_vector = embeddings_index.get(word.capitalize())
if embedding_vector is None:
embedding_vector = embeddings_index.get(porter.stem(word))
if embedding_vector is None:
embedding_vector = embeddings_index.get(lancaster.stem(word))
if embedding_vector is None:
embedding_vector = embeddings_index.get(snowball.stem(word))
if embedding_vector is None:
embedding_vector = embeddings_index.get(lemmatizer.lemmatize(word))
if word == hparams['tokenizer_oov_token'] or embedding_vector is None:
embedding_matrix[i] = random_vector
else:
embedding_matrix[i] = embedding_vector
count += 1
print('Word vectors coverage:', count / max_words)
print('Embedding matrix shape:', embedding_matrix.shape)
return embedding_matrix
def create_padded_sequences(X_texts, tokenizer, hparams):
print('Converting texts to sequences...')
X_sequences = tokenizer.texts_to_sequences(X_texts)
print('Padding sequences...')
X_padded = tf.keras.preprocessing.sequence.pad_sequences(X_sequences, maxlen=hparams['max_length'], padding=hparams['padding'], truncating=hparams['truncating'])
return X_padded
#https://www.tensorflow.org/tutorials/text/nmt_with_attention#write_the_encoder_and_decoder_model
class BahdanauAttention(tf.keras.Model):
def __init__(self, units):
super(BahdanauAttention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, query, values):
# values shape == (batch_size, max_length, hidden size)
# hidden (query?) shape == (batch_size, hidden size)
# hidden_with_time_axis shape == (batch_size, 1, hidden size)
# we are doing this to perform addition to calculate the score (with broadcasting)
hidden_with_time_axis = tf.expand_dims(query, 1)
W1_out = self.W1(values) # (batch_size, max_length, units)
W2_out = self.W2(hidden_with_time_axis) # (batch_size, 1, units)
# the shape of the tensor (W_out_sum) before applying self.V is (batch_size, max_length, units)
W_out_sum = W1_out + W2_out # (..., 1, units) broadcasted to (..., max_length, units)
W_out_sum_tanh = tf.nn.tanh(W_out_sum)
# score shape == (batch_size, max_length, 1)
# we get 1 at the last axis because we are applying score to self.V
score = self.V(W_out_sum_tanh)
# attention_weights shape == (batch_size, max_length, 1)
attention_weights = tf.nn.softmax(score, axis=1)
context_vector = attention_weights * values # (batch_size, max_length, hidden_size)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
def build_model(hparams, embedding_matrix=None):
print('Building model...')
np.random.seed(hparams['random_state'])
random.seed(hparams['random_state'])
tf.random.set_seed(hparams['random_state'])
input_ = keras.layers.Input(shape=(hparams['max_length'],))
if embedding_matrix is not None:
x = keras.layers.Embedding(input_dim=hparams['max_words'], output_dim=hparams['emb_out_dim'],
embeddings_initializer=keras.initializers.Constant(embedding_matrix), trainable=False)(input_)
else:
x = keras.layers.Embedding(input_dim=hparams['max_words'], output_dim=hparams['emb_out_dim'])(input_)
x = keras.layers.SpatialDropout1D(rate=hparams['dropout_rate'])(x)
x, x_h_state_1_1, _, x_h_state_1_2, _ = keras.layers.Bidirectional(keras.layers.LSTM(256, return_sequences=True, return_state=True))(x) # x.shape = None, 256, len
avg_1 = keras.layers.GlobalAveragePooling1D()(x)
max_1 = keras.layers.GlobalMaxPooling1D()(x)
x_ctx_1_1, _ = BahdanauAttention(256)(x_h_state_1_1, x[:,:,0:256])
x_ctx_1_2, _ = BahdanauAttention(256)(x_h_state_1_2, x[:,:,256:])
x_seq_2_1, x_state_2_1 = keras.layers.GRU(128, return_sequences=True, return_state=True)(x)
avg_2_1 = keras.layers.GlobalAveragePooling1D()(x_seq_2_1)
max_2_1 = keras.layers.GlobalMaxPooling1D()(x_seq_2_1)
x_ctx_2_1, _ = BahdanauAttention(128)(x_state_2_1, x_seq_2_1)
x_seq_2_2, x_state_2_2 = keras.layers.GRU(128, return_sequences=True, return_state=True, go_backwards=True)(x)
avg_2_2 = keras.layers.GlobalAveragePooling1D()(x_seq_2_2)
max_2_2 = keras.layers.GlobalMaxPooling1D()(x_seq_2_2)
x_ctx_2_2, _ = BahdanauAttention(128)(x_state_2_2, x_seq_2_2)
c_out = keras.layers.concatenate([avg_1,
max_1,
x_ctx_1_1,
x_ctx_1_2,
avg_2_1,
max_2_1,
x_ctx_2_1,
avg_2_2,
max_2_2,
x_ctx_2_2,
])
output = keras.layers.Dense(1, activation='sigmoid')(c_out)
model = keras.Model(inputs=[input_], outputs=[output])
model.compile(optimizer=hparams['optimizer'], loss='binary_crossentropy', metrics=[])
print('Parameters:', model.count_params())
return model
class CustomAveraging(tf.keras.callbacks.Callback):
def __init__(self, save_epoch):
self.save_epoch = save_epoch - 1
self.saved_weights = None
def on_epoch_end(self, epoch, logs={}):
if epoch == self.save_epoch:
self.saved_weights = self.model.get_weights()
print('Model weights saved.')
if epoch == (self.save_epoch + 1):
model_weights = self.model.get_weights()
new_weights = [(model_weights[i] + self.saved_weights[i]) / 2 for i in range(len(model_weights))]
self.model.set_weights(new_weights)
print('Model weights averaged.')
# main
start = time.time()
X_train_texts, y_train = load_train_data(file_path=TRAIN_DATA_PATH,
train_column='question_text',
label_columns=LABEL_COLUMNS)
X_test_texts, qids = load_test_data(TEST_DATA_PATH, train_column='question_text')
hparams = {
'max_words': None, # for Tokenizer
'max_length': 40,
'batch_size': 512,
'emb_out_dim': 600,
'dropout_rate': 0.4,
'epochs': 4,
'optimizer': 'nadam',
'tokenizer_filters': '!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
'tokenizer_lower': False,
'tokenizer_split': " ",
'tokenizer_char_level': False,
'padding': 'post',
'truncating': 'post',
'tokenizer_oov_token': '<UNK>', # not a real hyperparameter
'n_classes': y_train.shape[1], # not a real hyperparameter
'random_state': RANDOM_STATE # not a real hyperparameter
}
print('Cleaning contractions...')
X_train_texts = [clean_contractions(text) for text in X_train_texts]
X_test_texts = [clean_contractions(text) for text in X_test_texts]
print('Cleaning special characters...')
X_train_texts = [clean_special_chars(text) for text in X_train_texts]
X_test_texts = [clean_special_chars(text) for text in X_test_texts]
print('Correcting spelling...')
X_train_texts = [correct_spelling(text) for text in X_train_texts]
X_test_texts = [correct_spelling(text) for text in X_test_texts]
keyed_vectors_google = models.KeyedVectors.load_word2vec_format(GOOGLE_NEWS_PATH, binary=True) #index_word_embeddings(GOOGLE_NEWS_PATH, 300, True)
embeddings_index_google = index_keyed_embeddings(keyed_vectors_google)
print('Deleting keyed vectors...')
del keyed_vectors_google
gc.collect()
embeddings_index_wiki = index_word_embeddings(WIKI_NEWS_PATH, 300, True)
tokenizer = fit_tokenizer(X_train_texts + X_test_texts, hparams)
VOCAB_SIZE = len(tokenizer.word_index)
if hparams['max_words'] is None:
hparams['max_words'] = VOCAB_SIZE + 1 # 1 for padding value 0
else:
hparams['max_words'] += 1
print('Found', VOCAB_SIZE, 'unique train tokens.')
print('MAX WORDS:', hparams['max_words'])
embedding_matrix_wiki = prepare_embedding_matrix(hparams['max_words'], 300,
tokenizer.word_index, embeddings_index_wiki, hparams)
embedding_matrix_google = prepare_embedding_matrix(hparams['max_words'], 300,
tokenizer.word_index, embeddings_index_google, hparams)
embedding_matrix_2 = 0.7 * embedding_matrix_wiki + 0.3 * embedding_matrix_google
print('Deleting used matrices...')
del embeddings_index_wiki, embeddings_index_google, embedding_matrix_wiki, embedding_matrix_google
gc.collect()
embeddings_index_glove = index_word_embeddings(GLOVE_PATH, 300)
embeddings_index_paragram = index_word_embeddings(PARAGRAM_PATH, 300)
embedding_matrix_glove = prepare_embedding_matrix(hparams['max_words'], 300,
tokenizer.word_index, embeddings_index_glove, hparams)
embedding_matrix_paragram = prepare_embedding_matrix(hparams['max_words'], 300,
tokenizer.word_index, embeddings_index_paragram, hparams, lower_only=True)
embedding_matrix_1 = 0.7 * embedding_matrix_glove + 0.3 * embedding_matrix_paragram
print('Deleting used matrices...')
del embeddings_index_glove, embeddings_index_paragram, embedding_matrix_glove, embedding_matrix_paragram
gc.collect()
embedding_matrix_final = np.concatenate((embedding_matrix_1, embedding_matrix_2), axis=1)
X_train_padded = create_padded_sequences(X_train_texts, tokenizer, hparams)
X_test_padded = create_padded_sequences(X_test_texts, tokenizer, hparams)
model = build_model(hparams, embedding_matrix_final)
model.fit(X_train_padded, y_train, epochs=hparams['epochs'], batch_size=hparams['batch_size'], shuffle=True,
callbacks=[CustomAveraging(3)], verbose=2)
print('\nPredicting...')
y_pred = np.squeeze(model.predict(X_test_padded, batch_size=4096))
y_pred = (y_pred >= 0.3780).astype(int)
submission = pd.DataFrame({'qid': qids})
submission['prediction'] = y_pred
submission.to_csv('submission.csv', index=False)
print('done')