
PMPI SUCCESSOR
RESTART 2017

Code Name QMPI

LLNL-PRES-xxxxxx
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



Why redo PMPI?
• Weak symbol intersection is brittle

• Depends on the OS

• Limited to a single tool
• One set of indirections

• Forces tools to be monolithic
• Single shared library



Requirements
• Support multiple concurrent tools in a single process
• Link time or runtime enablement
• Low to no overhead when no tool is attached

• Possibility for zero overhead when disabled
• No loss of functionality compared to existing PMPI

• Complete coverage of all MPI routines (except where exempted 
already in MPI 3)

• Complete coverage of all tool functionality
• Incl. changes to parameters or routines used

• All language bindings (C, mpif.h, use mpi, use mpif08)
• Support for pre and post call activation

• Basically wrapper functionality
• Tools can implement functionality in C (in one place) regardless 

of language bindings used
• Integration with MPI thread support

Vorführender
Präsentationsnotizen
C vs. Fortran – what to do if some types are different (e.g., request type for NEC MPI)

What about Fortran only functions?



QMPI:
A VIEW FROM THE TOOL
Focus: Interface the tool would see

Let’s ignore:
Configuration issues, Initialization, Complex Tool DAGs, …



Groundrules
• Maintain the wrapping concept

• Only way to maintain all functionality
• Interface and all tools will be C only

• Fortran mapping has to be taken care of by the MPI library
• Tools are responsible for matching runtimes when using C++

• Support for simple tool stacks only
• Nested wrapping 
• No DAGs, no inter-tool services, no coordination, no dependencies

• Tools are by default independent of each other
• Can run on their own
• Can assume a standard compliant implementation of MPI routines to build 

upon (the old PMPI interface)
• Have to provide a standard compliant implementation of MPI, which 

consists of:
• Wrapped routine (defined MPI routines – or close to, see below)
• MPI routines not wrapped (when MPI=PMPI)



Tools Responsibilities
• Tools implement wrapper routines

• Set of routines with well defined names
• One name defined for each MPI routine
• Extended prototype with extra fields
• E.g.: QMPI_Comm_rank(MPI_Comm comm, int *rank, <extra data>)

• Tool routines must call “follow on routine”, the match to the old PMPI
• Assigned by MPI during initialization
• Can be actual MPI or another tool – transparent

• Routines not implemented are handled by MPI
• Automatically set to a “follow-on” routine

• The implemented wrappers combined with all default routines 
(which can be assumed to adhere to the MPI standard) must 
again implement a coherent version of the MPI standard

Vorführender
Präsentationsnotizen
Does it have to be a well defined routine?



Basic Wrapping
• Each tool implements a set of routines it wraps
• Tools have independent instances

• Separate storage space
• Each tool instance has the following “available”:

• A functional table with all “PMPI” / follow on routines
• A pointer to store internal information

• Wrapping process:
Int QMPI_X(…)
{

qmpi_x_t pqmpi_x;
MPI_Table_query(“QMPI_X”, &pqmpi_x,table);
... Do work ...
err=pqmpi_x(...);
... Do work ...
return err;

}
• Note: query routine should be called once during initialization



Multiple Tools

App

Exposed MPI_Send

Plugin 1: Profile tool (QMPI_Send interface)

Plugin 2: Trace tool (QMPI_Send interface)

Actual MPI_Send

Guts of MPI_Send



Magic Data Available to Tools
• Each tool instance needs two pieces of data

• Pointer to its own state
• Pointer to a table of PMPI functions to call

• Question where does it get that data from?
• Pointer to instance state must be passed in from previous tool

• Pointer must be used to store PMPI function table
• Pointer must be used to store pointer to instance for follow on tool

• Basically: context for all tools gets handed down

• Where does this data come from originally?
• Setup during intialization routine

• Passes in context for follow-on tool
• Passes in PMPI function table

• Tools then stores that information



Concept 1: Function Tables
• Used to store one function pointer for each MPI function

• Describes complete interface

• Tools can use that to query “follow-on functions”

• Specified as opaque objects



APIs for Function Tables
• Create a Table

• Out: table handle
• Destroy a Table

• In/Out: table handle
• Copy a Table

• In: src and dst table handles
• Query one Function

• In: table handle, function ID or name
• Out: function

• Set one Function
• In: table handle, function ID or name, function

• Unset one Function
• In: table handle, function ID or name

• Needs enumeration of all MPI functions
• Alternative: strings (?)

• Likely to contain other tool routines (init/finalize/…)

Vorführender
Präsentationsnotizen
Should we let MPI own all tables – tools can’t create, destroy, copy them – we can just manipulate them
We still pass a opaque objects from/to tools



Concept 2: Tools and Instances
• Tools expose a set of intercepted routines

• Typically implemented as a shared library
• Magically gets loaded

• Let’s discuss that later
• Doesn’t do anything by itself

• No automatic interception
• Just provides routines

• Tool instances are built from tools
• Use the set of intercepted routines
• Instances have their own context

• Instances don’t share context
• Context = void pointer to store information



Bringup steps (before MPI_Init)
• Step 1: tools get registered

• This loads the tools 
• MPI now knows about them

• Step 2: tools get initialized
• Make their wrapped functions known
• Provide meta data

• Step 3: MPI creates a list of tool to instantiate
• Let’s leave that to magic
• Result is an ordered list of tools to create instances for

• Step 4: tools instances get initialized
• Tools get context
• Done bottom up (see late why)



Step 1: Tool Registration
• Option 1 / Callback

• MPI searches for available intercepts and remembers them
• Tool implements a well defined callback routine (special QMPI routine)
• Routine gets called from MPI 
• Tools fills out a “who am I” record and returns it
• Returns pointer to initialization routine

• Option 2 / Self registration
• Tool gets “magically” initialized (ini routines)
• Tool registers itself by calling the MPI function for tool registration
• Tool passes that table to MPI
• Tools fills out a “who am I” record and passes it
• Provides pointer to initialization routine

Should we allow (or enable for the future) dynamic registration?
What about dynamic addition of routines?

Vorführender
Präsentationsnotizen
What about a setup where not all processes exists in the beginning of time? 

Need to make sure we cover the case for static linking



Step 2: Tool Initialization
• MPI calls initialization routines

• Arbitrary order
• MPI passes function table

• Represents all intercepted routines MPI could find
• Typically used for option 1 

• Can be manipulated during the initialization
• Typically used for option 2

• This step could be combined with Step 1

Vorführender
Präsentationsnotizen
The table could be static since it is per tool but then we can’t do it opaque
	either table of void* or a huge struct of all pointers with correct prototypes
	this would make combining step 1 and 2 possible due to early initialization





Step 3: Magic



Step 3: Magic
• MPI decides on a list of tool instances to use

• Creates a tool stack
• Mechanism open (e.g., Env. Variable)

• These tools are nested 

MPI App

Tool 1 / top 

Tool 2 / top

PMPI Routine

Tool 2 / bottom

Tool 1 / bottom

MPI App

Vorführender
Präsentationsnotizen
Only do a simple list
Order it by explict order or by priority
MPI creates one instance per tool only
More complicated things require a separate specification, which is outside of MPI (at least for now)



Step 4: Tool Instance Initialization
• Each tool gets initialized in reverse order

• Instance initialization routine stored in function table for tool

• Initialization routine gets passed
• A void pointer to store tool instance context
• An opaque void pointer

• This is the context for the follow on tool
• A function table containing the PMPI routines

• Who owns this table?
• When can it change and who can do this?
• Or can this just be a tool ID

• Tool responsibilities
• Create storage structure and hook it to void pointer
• Store opaque pointer and function table in that structure



Wrapping
Int QMPI_X(<MPI arguments>, void* context, MPI_blob blob)
{

retrieve function table from context -> next_table
retrieve opaque pointer from context -> next_context
qmpi_x_t pqmpi_x;
MPI_Table_query(“QMPI_X”, &pqmpi_x,next_table);
... Do work ...
err=pqmpi_x(<MPI arguments>, next_context, blob);
... Do work ...
return err;

}

• Note: query routine should be called once during initialization
• Blob contains MPI internal information, such Fortran flag 

Vorführender
Präsentationsnotizen
Or do you want to enforce that this is done every time to allow dynamic tools – tool tables can change

This requires a fast implementation of the tables – like a real table

Is the table dyamic – who owns the table?

The table lookup could also be global with passing an ID 	
	would allow MPI to change the table dymically
	do we want that and how?
	Is this a problem when combining with sessions?

Should this be combined with MPI_T Events, notification in case of tools have changed

Get rid of strings for query routines
	may not matter if we change to a table or struct

Need some guarantees on when changes to the table happen: perhaps through events
Tool gets passed the new table and swap it in on demand when its ready



What Needs to be Standardized
• Function Tables

• Type and access function

• Shadow API
• All MPI functions with slight modifications
• ”Chance to get it right”

• Initialization routines for tools and tool instances
• Includes the “who am I” record

• Query routines
• Ability to see which tools (and tool instances?) are present 

• Specification of tools to load
• Do we need that or is that out of the specification?



Issues
• Transition between PMPI and QMPI

• Deprecate PMPI
• For a while this needs to be interoperable

• PMPI is likely on top of the new infrastructure
• In intercepts the actual MPI calls from the app

• Threading support
• What if tool needs thread support itself

• Who am I field
• Versioning
• Unique name



Dynamic Tools / Open Issues
• Changing “next tables”

• When can it happen
• Who gets notified
• Thread safety

• Probably should have dynamic updates in tables
• Opaque objects may be too slow

• Newly loaded tools need to be initialized
• Need a barrier?

• What about removing
• Can a tool just finalized itself?



Now What About Complex Tools?
• We do want full PnMPI functionality

• Tool DAGs / Diamond stacks
• Services for intra tool communication
• Support for cooperating tool modules

• BUT: this is not MPI’s task
• Research
• Requires external specification

• However, this proposal allows developers to build tools that
• Are implemented as a tool themselves
• Provide this functionality
• Can integrate existing tools without changes

• No more patching like in PnMPI



Complex Tool Use Cases
• This should be implementable by a new tool that uses the 

interface, without changing the interface
• Only run on certain nodes/processes/communicator

• Argument for centralized table registry?

• Create arbitrary tool DAGs


	PMPI SUCCESSOR�RESTART 2017
	Why redo PMPI?
	Requirements
	QMPI:�A View from the Tool
	Groundrules
	Tools Responsibilities
	Basic Wrapping
	Multiple Tools
	Magic Data Available to Tools
	Concept 1: Function Tables
	APIs for Function Tables
	Concept 2: Tools and Instances
	Bringup steps (before MPI_Init)
	Step 1: Tool Registration
	Step 2: Tool Initialization
	Step 3: Magic
	Step 3: Magic
	Step 4: Tool Instance Initialization
	Wrapping
	What Needs to be Standardized
	Issues
	Dynamic Tools / Open Issues
	Now What About Complex Tools?
	Complex Tool Use Cases

