
QMPI
(We give up – Jeff has won the name battle – back

then, for now, it has changed since then … we’ll get
to that …)

Discussion on a New Profiling Interface

October 2, 2015

Why redo PMPI?

}  Weak symbol intersection is brittle
}  Depends on the OS

}  Limited to a single tool
}  One set of indirections

}  Forces tools to be monolithic
}  Single shared library

Requirements

}  Support multiple concurrent tools in a single process
}  Link time or runtime enablement
}  Low to no overhead when no tool is attached

}  Possibility for zero overhead when disabled
}  No loss of functionality compared to existing PMPI

}  Complete coverage of all MPI routines (except where exempted already in
MPI 3)

}  Complete coverage of all tool functionality
}  Incl. changes to parameters or routines used

}  All language bindings (C, mpif.h, use mpi, use mpif08)
}  Support for pre and post call activation

}  Basically wrapper functionality
}  Tools can implement functionality in C (in one place) regardless of

language bindings used
}  Integration with MPI thread support

Challenges

}  Initialization (MUST)
}  Ability to load tool(s) without requiring linking in the tool
}  Specify more than one tool (SHOULD REALLY BE THERE)

}  Interception (MUST)
}  Pre/Post/Wrap options
}  Call backs instead of linker tricks
}  Stackable

}  Multiple tools (AT LEAST ENABLE / NOT PREVENT)
}  Specification of which tools to use/load
}  Dependency and order
}  Communication between tools

}  Transition time / Interaction with existing PMPI

General sequence of events

1.  Tools register (either before or after main starts)
2.  MPI_*INIT* is invoked

1.  Tools are queried, selected, and initialized
2.  QMPI_*INIT* is invoked

}  I.e., wrapped functionality of MPI_*INIT*

3.  QMPI_*INIT* eventually returns

3.  MPI_*INIT* returns
4.  …program proceeds normally

Tool Registration

}  MPI_Tool_register(<symbol name>)
}  Symbol is a struct instance containing meta data about the tool
}  Think of this as a “base class” (in a C++ sense) for each tool
}  Meta data includes (but is not limited to):

}  meta data versioning (i.e., versioning of this API)
}  tool version
}  tool name
}  function pointer to query function
}  context (or this may simply be hidden / stored after the meta data)

}  How to ensure <symbol name> is unique?
}  Example: GOV_LLNL_SCALABILITY_PROFILER (because it sorts

better than having PROFILER_SCALABILITY_LLNL_GOV
}  Add symbol naming convention to the standard as advice to user

Tool Registration

}  Call as many times as you like (as many tools as needed)
}  Commonly called in one of 3 places: before MPI_*Init* & shared lib

constructor & within the tool initialization routines
}  MPI_Tool_register has to return before any MPI_*Init* is called (on

any thread)
}  Otherwise, the routine returns an error class, but will not invoke any

exceptions and hence is not fatal

}  MPI_Tool_register has to be thread safe
}  MPI_Tool_register only with C bindings

}  Will add example in standard on how to call from Fortran

}  Tools may be registered more than once
}  Will not duplicate tool or create a new instance
}  Need to define error class to warn if tool is already registered

}  Fab suggests MPI_ERR_PENDING

Tool Registration

}  If any tool is registered, the MPI implementation implicitly
registers itself
}  I.e., the QMPI interfaces to the actual MPI implementation
}  This “tool” then can appear as the lowest layer in the stack of tools

– i.e., the “tool” that actually does the work of the MPI functionality

}  Open problem
}  Name spaces may hide MPI library, so that register call would not be

there

Prototype

/* Tool initialization routines */

int QMPI_Tool_register(char *symbol, char *libname);

 3 options for libname: named, SELF, GLOBAL/DEFAULT
 Make this selection through a 3rd parameter: libnametype/searchscope (enum)

/* Query function called by MPI */

typedef int(*QMPI_Tool_query_fct)(int *num_variants, QMPI_Tool_variant_t **variants);

 typedef struct qmpi_tool_registration_structure_d /* set by the tool */
{
 int api_version; /* TO DISCUSS */ -> to be set by the tool / checked by the runtime
 int tool_version;
 char *tool_name;
 qmpi_tool_query_fct *query_fct; /* will be called by runtime on startup */
} QMPI_Tool_registration_structure_t;

Tool Code

init_routine()
{
 /* Setup data structure */

 GOV_LLNL_SCALABILITY_SAMPLE.api_version = QMPI_VERSION;
 GOV_LLNL_SCALABILITY_SAMPLE.tool_version = SAMPLE_VERSION;
 GOV_LLNL_SCALABILITY_SAMPLE.tool_name="sample";
 GOV_LLNL_SCALABILITY_SAMPLE.query_fct=sample_query_fct;

 /* Register tool */

 int err=QMPI_Tool_register("GOV_LLNL_SCALABILITY_SAMPLE", SELF);
 if (err!=MPI_SUCCESS)
 exit(-1); (or be happy)

 /* Return and wait */

 return;
}

Open Question

}  Can any tool see the MPI library?
}  Link/load order
}  OMP had problems with this
}  Issue: loading MPI library into a local namespace

}  Not visible from other namespaces, which would be the tool
}  Often seen in Python/Perl/… type systems

}  Need to revisit!
}  What is the impact of preloading MPI into a global namespace to a later

load of the same library into a local namespace?
}  Is the resulting library namespace local or global?

}  How to version the structure?
}  Need constant?
}  Require tool to set it?

}  Additional search path/hint string?
}  4th option for scope enum?

MPI_*INIT* (1)

}  Once all the tools have registered, MPI_*INIT* is invoked
}  We may relax this someday and allow tools to register after MPI_*INIT* --

but not in v1.0
}  MPI invokes the query function on each registered tool

}  Query function args: requested thread level, …TBD…
}  The query function returns zero or more tool variants
}  E.g., if the tool decides not to run, it returns zero variants
}  Or if the tool decides that it has multiple sub-tools, it returns N variants

}  A variant is a struct of meta data
}  Analogous to a derived class (in a C++ sense)
}  Contains (but not limited to):

}  pointer to tool meta data struct
}  tool variant name
}  list of MPI thread levels supported
}  function pointer to initialization function
}  QMPI function table (NULL for functions not provided)
}  context (which may be hidden / stored after the meta data)

Function Tables

}  Type of QMPI_Fcttable_types_t?
}  Generic function pointer? What about type safety?

}  Only way to do it if we want get/set
}  Big structure with entry for all functions

}  Would require exposing the table type
}  Extensions for non standardized functions and for online configurations? Add STRING -> OFFSET function

(ability to query the location of a function pointer in the big struct based on the string name of a function)

/* Function table – hidden, not intended for users and also wrong (probably) */

typedef void *QMPI_Fcttable_t[QMPI_Fcttable_list_t];
 MAX constant – number of MPI routines in the standard
 TODO: should turn this into a struct with right types
 may not need the get/set routines

/* Function table access routines */

int QMPI_Fcttable_clean(QMPI_Fcttable_t *table); TODO: may be call it init
 TODO: may get rid of clean and just require everything to be NULLed

int QMPI_Fcttable_set(QMPI_Fcttable_t *table, QMPI_Fcttable_list_t fuction,
QMPI_Fcttable_types_t fctptr);
int QMPI_Fcttable_get(QMPI_Fcttable_t *table, QMPI_Fcttable_list_t fuction,
QMPI_Fcttable_types_t *fctptr);

Accessor Function -> NOT SAFE
Already deprecated

}  Open Questions
}  How opaque should it be? -> Optimization / backwards compat?

}  Maybe taken car of by library version ?!
}  Accessor functions? Ease of initialization for sparse tables?
}  Extensible / non-standard functions?
}  What is scalable?

}  Constants for all known functions in the standard
}  Could be enum or just INT type

}  Query routine “Name”->”Constant”
}  Can use that for standard and non-standard functions

}  Accessor functions take constants

New “MPI” Functions

}  Open Questions
}  What is the context?

}  State of instance, Fortran flag, …
}  How does context change as we go down the tree?

}  Passing the right context requires indirection through a core
}  “NEXT” operators?

typedef int (*QMPI_Init_FCT)(int*, char***, int, QMPI_Tool_context_t*);

typedef int (*QMPI_Finalize_FCT)(void, int, QMPI_Tool_context_t*);

typedef int (*QMPI_Send_FCT)(const void*, int, MPI_Datatype, int, int, MPI_Comm, int,
QMPI_Tool_context_t*);

typedef int (*QMPI_Recv_FCT)(void*, int, MPI_Datatype, int, int, MPI_Comm, MPI_Status,
int, QMPI_Tool_context_t*);

Variant Struct

typedef struct qmpi_tool_variant_d
{
 char *variant_name;
 int active_default; /* TO DISCUSS->implicitly added or explicitly requested? */
 int thread_level_min, thread_level_max;
 QMPI_Fcttable_t fcttable;
 QMPI_Instance_create *instance_create;
 QMPI_Instance_init *instance_init; /* PROBABLY NEED 2 – CREATE AND INIT -
HERE, TO DISCUSS */
} QMPI_Tool_variant_t;

Sample_Query_fct (Tool Code) 1/2

int sample_query_fct(int *num_variants, variants **QMPI_Tool_variant_t)
{
 /* Variant 1 */

 sample_variants[0].variant_name="sample1"; /* NEEDS TO BE ALLOCATED IN TOOL */
 sample_variants[0].active_default=1;
 sample_variants[0].thread_level_min=MPI_THREAD_SINGLE;
 sample_variants[0].thread_level_max=MPI_THREAD_MULTIPLE;
 QMPI_Fcttable_clean(&(sample_variants[0].fcttable));
 sample_variants[0].fcttable[QMPI_Send_ID]=Sample_Send;
 sample_variants[0].fcttable[QMPI_Recv_ID]=Sample_Recv;

 /* Variant 2 */

 sample_variants[1].variant_name="sample2";
 sample_variants[1].active_default=0;
 sample_variants[1].thread_level_min=MPI_THREAD_SINGLE;
 sample_variants[1].thread_level_max=MPI_THREAD_MULTIPLE;
 QMPI_Fcttable_clean(&(sample_variants[1].fcttable));
 sample_variants[1].fcttable[QMPI_Send_ID]=Sample_Send;

Sample_Query_fct (Tool Code) 2/2

 /* Variant 3 */

 sample_variants[2].variant_name="sample3";
 sample_variants[2].active_default=0;
 sample_variants[2].thread_level_min=MPI_THREAD_SINGLE;
 sample_variants[2].thread_level_max=MPI_THREAD_MULTIPLE;
 QMPI_Fcttable_clean(&(sample_variants[2].fcttable));
 sample_variants[2].fcttable[QMPI_Recv_ID]=Sample_Recv;

 /* Return variants */

 *variants=sample_variants;
 *num=3;

 return MPI_SUCCESS;
}

Continue the fun here!

MPI_*INIT* (2)

}  Next, MPI_*INIT* constructs a DAG
}  This step is as-yet undefined – we refer to it as “magic”
}  We need a lot more research and practical experience to know

what best practices are for creating this DAG
}  E.g., we think that somehow the MPI implementation should create this

DAG, but it would be nice to involve the tools in the decision-making of
creating the DAG, too. …it gets complicated.

}  So for now, we wave our hands and say “it is created”

}  The leaves of the DAG will likely be the QMPI interfaces for
the MPI implementation itself
}  Remember that MPI registered a “tool” of its own QMPI interfaces

Open Questions 1/2

}  Need creation function
}  Allows tool to initialize themselves
}  Provides context
}  Offer services

}  In case of DAGs
}  Allow only one successor?

}  Enable modules/tools to add more
}  Provide all successors statically?

}  Default?

}  Semantics in case of missing routines
}  If all tools define all interface routines this is not an issue
}  Set a default successor?
}  Only doing stacks with optional branching would help

Open Questions 2/2

}  Which tool variant gets included by default?
}  Without extra configuration file?

}  Same DAG on all nodes / in all processes?
}  What happens in spawning implementations?

MPI_*INIT* (3)

}  The DAG is made of tool instance nodes
}  Think of these as “objects” of the “derived class” (in a C++ sense)
}  Each node in the DAG is a tool instance struct containing:

}  Pointer to tool variant
}  List of children tool instances
}  Tool instance initialization function pointer
}  Tool instance context pointer

}  The DAG contains one or more nodes
}  A tool variant may appear more than once in a DAG

}  NOTE: making copies of variants is tricky, since they contain context. Need to
figure that out.

}  A tool variant may not appear at all in the DAG
}  Optimization: if the DAG ends up containing one node (i.e., the MPI

implementation itself), QMPI profiling can be disabled for this run

Profile	
 tool	
 (QMPI_Send	
 interface)	

Trace	
 tool	
 (QMPI_Send	

interface)	

Trace	
 tool	
 (QMPI_Send	

interface)	

DAG	
 example	
 1	

At	
 each	
 invoca@on	
 (e.g.,	
 MPI_Send),	
 the	
 profile	
 tool	
 can	
 choose	

whether	
 to	
 invoke	
 the	
 green	
 or	
 red	
 child.	

MPI	
 implementa@on	
 QMPI	
 interfaces	

tool	
 A	
 variant	
 1	

tool	
 B	
 variant	
 1	
 tool	
 B	
 variant	
 2	

tool	
 C	
 variant	
 1	

MPI	
 implementa@on	

QMPI	
 interfaces	
 /	

variant	
 1	

The	
 baseball	

diamond	
 tool	

graph	
 example	

The	
 point	
 is	
 that	
 tool	
 C	

has	
 mul@ple	
 parents,	

but	
 it	
 doesn’t	
 know	
 or	
 	

care	
 who	
 its	
 parents	
 are	
 –	

it	
 just	
 gets	
 called	
 by	

someone	
 	

DAG	
 example	
 2	

MPI_*INIT* (4)

}  Once the DAG is created, MPI initializes every node
}  Call the tool instance initialization function on each DAG node. Args:

}  Tool instance ID (e.g., from 0-(n-1) – which copy of the variant am I?)
}  Tool instance / node pointer (i.e., the “this” pointer)
}  List of children… or is this already on the node pointer?
}  Does a node need to track the contexts for each child node, or is the context

stored on the child node? My $0.02: store it on the node, and just pass the
node pointer to the child when invoking it (i.e., as a “this” pointer). I’m
unfortunately out of time to think about this right now…

}  It is an error if a variant fails to initialize (i.e., the tool query function
should not have returned a variant if it should know that it would later
fail to initialize)
}  Probably need to abort, because the DAG will be borked…?

}  Open question: Do we need to invoke a finalization function for nodes
that do not end up in the DAG?

Comments

}  Separate from creation routine
}  Register services in creation
}  Request services in initialization

}  How to handle/pass on context?

After everything is initialized

}  Once the entire DAG is initialized
}  MPI invokes the QMPI_*INIT* wrapper at the root of the DAG
}  Assumedly, eventually the MPI implementation’s QMPI interface for

MPI_*INIT* will get invoked

}  MPI is considered not initialized on the “way down” the tool stack,
but initialized on the “way up”
}  Can use full MPI on the way up
}  I.e., MPI_INITIALIZED returns 0 on the way down, 1 on the way up

}  Eventually the QMPI_*INIT* call stack returns back up the DAG
}  MPI_Init returns to the app

}  App proceeds normally from there
}  Each MPI call will (potentially) dispatch off to an underlying QMPI_*

interface and traverse the DAG

App	

MPI_Send	

Profile	
 tool	
 (QMPI_Send	
 interface)	

Trace	
 tool	
 (QMPI_Send	

interface)	

QPMPI_Send	

actual	
 guts	
 of	
 MPI	
 implementa@on's	
 “MPI_Send”	
 func@onality	

Trace	
 tool	
 (QMPI_Send	

interface)	

Figuring Out What Happened in the Magic

}  MPI_Get_tools(<array of strings>,<array of errors>)
}  Can only be called after all tools have been initialized
}  Intent is to let app decide whether it wants to continue (e.g., don’t want to start a 2

week run if the app doesn’t have the tool(s) it wants)
}  Open questions:

}  What strings do we get back? Tool names? Tool variant names?
}  Do we get back an array spanning all the tool variants? Or DAG nodes? Or …?
}  Who frees the strings / arrays?

}  Open question: How can we call this from a tool?
}  Can’t be called until init is done
}  May need a way to invoke this from tools
}  Call from Init wrapper possible

}  Do we allow a call on the way “down” the Init chain?

}  Advice to implementers or users
}  MPI implementation can provide this kind of functionality without changing the

application (E.g., MPI_T control variable that says “I need tools A,B,C and if they’re
not there at the end of MPI_INIT, abort)

Open Issues

}  Can the DAG be different for each MPI function?
}  Similar to “coll” components/modules in Open MPI
}  Allows for greater inter-composition of tools

}  Dependencies
}  Could easily be arguments to registration function
}  Or could be supplied during tool_init funcion

}  Order
}  Order non dependent tools
}  Must be externally specified
}  Groups of “concurrent” tools

}  Communication between tools
}  PnMPI had shared variables and functions
}  Can this be done through MPI_T?

}  Actual API for reading/writing the wrapped function table
}  Query for function pointers
}  How to set it by the tool?

}  Prototypes for QMPI functions
}  Need to match the MPI semantics for all 300+ functions
}  Needs to be able to handle context

