QMPI

(We give up — Jeiff has won the name battle — back
then, for now, it has changed since then ... we’ll get
to that ...)

Discussion on a New Profiling Interface

October 2, 2015

Why redo PMPI?

» Weak symbol intersection is brittle
Depends on the OS

» Limited to a single tool
One set of indirections

» Forces tools to be monolithic
Single shared library

Requirements

» Support multiple concurrent tools in a single process

» Link time or runtime enablement

» Low to no overhead when no tool is attached
Possibility for zero overhead when disabled

» No loss of functionality compared to existing PMPI

Complete coverage of all MPI routines (except where exempted already in
MPI 3)

Complete coverage of all tool functionality
Incl. changes to parameters or routines used

All language bindings (C, mpif.h, use mpi, use mpif08)
» Support for pre and post call activation
Basically wrapper functionality

» Tools can implement functionality in C (in one place) regardless of
language bindings used

Integration with MPI thread support

v

Challenges

» Initialization (MUST)

Ability to load tool(s) without requiring linking in the tool
Specify more than one tool (SHOULD REALLY BE THERE)

» Interception (MUST)
Pre/Post/Wrap options
Call backs instead of linker tricks
Stackable

» Multiple tools (AT LEAST ENABLE / NOT PREVENT)

Specification of which tools to use/load
Dependency and order
Communication between tools

» Transition time / Interaction with existing PMPI

General sequence of events

I. Tools register (either before or after main starts)
2. MPI_*INIT* is invoked

Tools are queried, selected, and initialized

QMPI_*INIT* is invoked
l.e., wrapped functionality of MPI_*INIT*

QMPI_*INIT* eventually returns

3. MPL_*INIT* returns
4. ...program proceeds normally

Tool Registration

» MPI_Tool register(<symbol name>)
Symbol is a struct instance containing meta data about the tool

Think of this as a “base class” (in a C++ sense) for each tool

Meta data includes (but is not limited to):
meta data versioning (i.e., versioning of this API)
tool version

tool name

function pointer to query function
context (or this may simply be hidden / stored after the meta data)

» How to ensure <symbol name> is unique!?

Example: GOV_LLNL_SCALABILITY PROFILER (because it sorts
better than having PROFILER _SCALABILITY LLNL GOV

Add symbol naming convention to the standard as advice to user

Tool Registration

» Call as many times as you like (as many tools as needed)

Commonly called in one of 3 places: before MPI_*Init* & shared lib
constructor & within the tool initialization routines

MPI_Tool register has to return before any MPI_*Init* is called (on
any thread)

Otherwise, the routine returns an error class, but will not invoke any
exceptions and hence is not fatal

MPI_Tool register has to be thread safe
MPIl_Tool_register only with C bindings
Will add example in standard on how to call from Fortran
» Tools may be registered more than once

Will not duplicate tool or create a new instance

Need to define error class to warn if tool is already registered
Fab suggests MPI_ERR_PENDING

Tool Registration

» If any tool is registered, the MPIl implementation implicitly
registers itself

l.e., the QMPI interfaces to the actual MPI implementation

This “tool” then can appear as the lowest layer in the stack of tools
— i.e., the “tool” that actually does the work of the MPI functionality

» Open problem

Name spaces may hide MPI library, so that register call would not be
there

Prototype

/* Tool initialization routines */

int QMPI_Tool_register(char *symbol, char *libname);
3 options for libname: named, SELF, GLOBAL/DEFAULT

Make this selection through a 3™ parameter: libnametype/searchscope (enum)

/* Query function called by MPI */

typedef int(*QMPI_Tool_query_fct)(int *num_variants, QMPI_Tool_variant_t **variants);

typedef struct qmpi_tool_registration_structure_d /* set by the tool */

{

int api_version; /* TO DISCUSS */ -> to be set by the tool / checked by the runtime
int tool_version;

char *tool_name;
qmpi_tool_query_fct *query_fct; /* will be called by runtime on startup */

} QMPI_Tool_registration_structure_t;

Tool Code

init_routine()

{

/* Setup data structure */

GOV_LLNL SCALABILITY_SAMPLE.api_version =

GOV_LLNL SCALABILITY_SAMPLE.tool version = SAMPLE VERSION,;
GOV_LLNL_SCALABILITY_SAMPLE.tool_name="sample";
GOV_LLNL_SCALABILITY_SAMPLE.query_fct=sample_query_fct;

/* Register tool */
int err=QMPI_Tool_register("GOV_LLNL_SCALABILITY_SAMPLE", SELF);
if (err!'=MP|_SUCCESS)

exit(-1); (or be happy)

/* Return and wait */

return;

Open Question

» Can any tool see the MPI library?
Link/load order

OMP had problems with this

Issue: loading MPI library into a local namespace
Not visible from other namespaces, which would be the tool
Often seen in Python/Perl/... type systems

Need to revisit!

What is the impact of preloading MPI into a global namespace to a later
load of the same library into a local namespace!?

Is the resulting library namespace local or global?

» Additional search path/hint string?
4t option for scope enum!?

MPI_*INIT* (1)

» Once all the tools have registered, MPI_*INIT* is invoked

We may relax this someday and allow tools to register after MPI_*INIT* --
but not in vI.0

» MPIl invokes the query function on each registered tool
Query function args: requested thread level, ... TBD...
The query function returns zero or more tool variants
E.g., if the tool decides not to run, it returns zero variants
Or if the tool decides that it has multiple sub-tools, it returns N variants

» A variant is a struct of meta data
Analogous to a derived class (in a C++ sense)
Contains (but not limited to):
pointer to tool meta data struct
tool variant name
list of MPI thread levels supported
function pointer to initialization function
QMPI function table (NULL for functions not provided)
context (which may be hidden / stored after the meta data)

Function Tables

/* Function table — hidden, not intended for users and also wrong (probably) */

typedef void *QMPI_Fcttable_t[QMPI_Fcttable_list_t];
MAX constant — number of MPI routines in the standard
TODO: should turn this into a struct with right types
may not need the get/set routines

/* Function table access routines */

int QMPI_Fcttable clean(QMPI_Fcttable t *table); TODO: may be call it init
TODO: may get rid of clean and just require everything to be NULLed

int QMPI_Fcttable set(QMPI_Fcttable t *table, QMPI_Fcttable list_t fuction,

QMPI_Fcttable_types_t fctptr);

int QMPI_Fcttable get(QMPI_Fcttable_t *table, QMPI_Fcttable_list_t fuction,

QMPI_Fcttable types_t *fctptr);

» Type of QMPI_Fcttable_types_t?
Generic function pointer? What about type safety?
Only way to do it if we want get/set
Big structure with entry for all functions
Would require exposing the table type

Extensions for non standardized functions-and for online configurations? Add STRING -> OFFSET function
(ability to query the location of a function pointer in the big struct based on the string name of a function)

Accessor Function -> NOT SAFE
Already deprecated

4

New “MPI” Functions

typedef int (*QMPI_Init_FCT)(int*, char***, int, QMPI_Tool context t*);
typedef int (*QMPI_Finalize_FCT)(void, int, QMPI_Tool_context_t*);

typedef int (*QMPI_Send_FCT)(const void*, int, MPI_Datatype, int, int, MPI_Comm, int,
QMPI_Tool context_t*);

typedef int (*QMPI_Recv_FCT)(void*, int, MPI_Datatype, int, int, MPI_Comm, MPI_Status,
int, QMPI_Tool context_t*);

» Open Questions
What is the context!?
State of instance, Fortran flag, ...
How does context change as we go down the tree!
Passing the right context requires indirection through a core

“NEXT” operators?

Variant Struct

typedef struct qmpi_tool_variant_d
{
char *variant_name;
int active_default; /* TO DISCUSS->implicitly added or explicitly requested? */
int thread level min, thread level max;
QMPI_Fcttable_t fcttable;
QMPI_Instance create *instance_create;
QMPI_Instance_init *instance_init; /¥ PROBABLY NEED 2 — CREATE AND INIT -
HERE, TO DISCUSS */
} QMPI_Tool_variant_t;

Sample_Query_1ct (Tool Code) 1/2

int sample_query_fct(int *num_variants, variants **QMPI_Tool_variant_t)

{

[*Variant | */

sample_variants[0].variant_name="samplel"; /* NEEDS TO BE ALLOCATED INTOOL */
sample_variants[0].active_default=1;

sample_variants[0].thread_level min=MPl|_THREAD_SINGLE;
sample_variants[0].thread_level _max=MPl_THREAD_MULTIPLE;

QMPI_Fcttable clean(&(sample_variants[0].fcttable));
sample_variants[0].fcttable[QMPI_Send [ID]=Sample_Send;
sample_variants[0].fcttable[QMPI_Recv_ID]=Sample_Recyv;

/*Variant 2 */

sample_variants[|].variant_name="sample2";
sample_variants[|].active_default=0;
sample_variants[|].thread_level min=MPl|_THREAD_SINGLE;
sample_variants[|].thread_level _max=MPl_THREAD_MULTIPLE;
QMPI_Fcttable clean(&(sample_variants[|].fcttable));
sample_variants[|].fcttable[QMPI_Send [ID]=Sample_Send;

Sample_Query_fct (Tool Code) 2/2

[*Variant 3 */

sample_variants[2].variant_name="sample3";
sample_variants[2].active_default=0;
sample_variants[2].thread_level min=MPl|_THREAD_SINGLE;
sample_variants[2].thread level _max=MP|_THREAD_MULTIPLE;
QMPI_Fcttable clean(&(sample_variants[2].fcttable));
sample_variants[2].fcttable[QMPI_Recv_ID]=Sample_Recy;

/* Return variants */

*variants=sample_variants;
*num=3;

return MPl_SUCCESS;

Continue the fun here!

MPL_*INIT* (2)

» Next, MPl_*INIT* constructs a DAG

This step is as-yet undefined — we refer to it as “magic”
We need a lot more research and practical experience to know
what best practices are for creating this DAG

E.g., we think that somehow the MPI implementation should create this
DAG, but it would be nice to involve the tools in the decision-making of
creating the DAG, too. ...it gets complicated.

So for now, we wave our hands and say “it is created”

» The leaves of the DAG will likely be the QMPI interfaces for
the MPI implementation itself

I”

Remember that MPI registered a “tool” of its own QMPI interfaces

Open Questions 1/2

» Need creation function
Allows tool to initialize themselves
Provides context
Offer services

» In case of DAGs

Allow only one successor?
Enable modules/tools to add more

Provide all successors statically?
Default?
» Semantics in case of missing routines
If all tools define all interface routines this is not an issue
Set a default successor?
Only doing stacks with optional branching would help

Open Questions 2/2

» Which tool variant gets included by default?

Without extra configuration file?

» Same DAG on all nodes / in all processes!?

» What happens in spawning implementations?

MPL_*INIT* (3)

» The DAG is made of tool instance nodes
Think of these as “objects” of the “derived class” (in a C++ sense)
Each node in the DAG is a tool instance struct containing;
Pointer to tool variant
List of children tool instances
Tool instance initialization function pointer
Tool instance context pointer

» The DAG contains one or more nodes

A tool variant may appear more than once in a DAG
NOTE: making copies of variants is tricky, since they contain context. Need to
figure that out.

A tool variant may not appear at all in the DAG

Optimization: if the DAG ends up containing one node (i.e., the MPI
implementation itself), QMPI profiling can be disabled for this run

DAG example 1

—

Trace tool (QMPI_Send Trace tool (QMPI_Send
interface)

At each invocation (e.g., MPI_Send), the profile tool can choose
whether to invoke the green or red child.

tool A variant 1

tool C variant 1
The point is that tool C

has multiple parents,
but it doesn’t know or
care who its parents are —
MPI implementation it just gets called by
QMPI interfaces / *someone*
variant 1

The baseball
diamond tool
graph example

MPI_*INIT* (4)

» Once the DAG is created, MPI initializes every node
Call the tool instance initialization function on each DAG node. Args:
Tool instance ID (e.g., from 0-(n-1) — which copy of the variant am |?)
Tool instance / node pointer (i.e., the “this” pointer)
List of children... or is this already on the node pointer?

Does a node need to track the contexts for each child node, or is the context
stored on the child node? My $0.02: store it on the node, and just pass the
node pointer to the child when invoking it (i.e., as a “this” pointer). I'm
unfortunately out of time to think about this right now...

It is an error if a variant fails to initialize (i.e., the tool query function
should not have returned a variant if it should know that it would later
fail to initialize)

Probably need to abort, because the DAG will be borked...?

Open question: Do we need to invoke a finalization function for nodes
that do not end up in the DAG!?

Comments

» Separate from creation routine
Register services in creation
Request services in initialization

» How to handle/pass on context!?

After everything is initialized

» Once the entire DAG is initialized
MPI invokes the QMPI_*INIT* wrapper at the root of the DAG

Assumedly, eventually the MPI implementation’s QMPI interface for
MPI_*INIT* will get invoked

» MPl is considered not initialized on the “way down” the tool stack,
but initialized on the “way up”
Can use full MPI on the way up
l.e., MPI_INITIALIZED returns O on the way down, | on the way up

» Eventually the QMPI_*INIT* call stack returns back up the DAG
MPI_Init returns to the app

» App proceeds normally from there

Each MPI call will (potentially) dispatch off to an underlying QMPI_*
interface and traverse the DAG

MPI_Send

Trace tool (QMPI_Send Trace tool (QMPI_Send

interface)

QPMPI_Send

actual guts of MPIl implementation's “MPI_Send” functionality

Figuring Out What Happened in the Magic

» MPl_Get_tools(<array of strings>,<array of errors>)
Can only be called after all tools have been initialized

Intent is to let app decide whether it wants to continue (e.g., don’t want to start a 2
week run if the app doesn’t have the tool(s) it wants)

» Open questions:
What strings do we get back? Tool names? Tool variant names?
Do we get back an array spanning all the tool variants! Or DAG nodes?! Or ...?
Who frees the strings / arrays?

» Open question: How can we call this from a tool?
Can’t be called until init is done
May need a way to invoke this from tools
Call from Init wrapper possible
Do we allow a call on the way “down” the Init chain?
» Advice to implementers or users

MPI implementation can provide this kind of functlonallty without changing the
application (E.g., MPI_T control variable that says “| need tools A,B,C and if they’re
not there at the end of MPI_INIT, abort)

Open Issues

» Can the DAG be different for each MPI function?

Similar to “coll” components/modules in Open MPI
Allows for greater inter-composition of tools

» Dependencies
Could easily be arguments to registration function
Or could be supplied during tool_init funcion
» Order
Order non dependent tools
Must be externally specified
Groups of “concurrent” tools
» Communication between tools
PnMPI had shared variables and functions
Can this be done through MPI_T?
» Actual API for reading/writing the wrapped function table
Query for function pointers
How to set it by the tool?
» Prototypes for QMPI functions
Need to match the MPI semantics for all 300+ functions
Needs to be able to handle context

