-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathCustomNets.py
585 lines (459 loc) · 24.6 KB
/
CustomNets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
"""
Contains my Implementation of NetVLAD and other CNN netsworks using
keras2.0 with tensorflow1.11.
Author : Manohar Kuse <mpkuse@connect.ust.hk>
Created : 7th Oct, 2018
"""
from keras import backend as K
from keras.engine.topology import Layer
import keras
import code
import numpy as np
import cv2
import code
from imgaug import augmenters as iaa
import imgaug as ia
# Data
from TimeMachineRender import TimeMachineRender
# from PandaRender import NetVLADRenderer
from WalksRenderer import WalksRenderer
from PittsburgRenderer import PittsburgRenderer
#-------------------------------------------------------------------------------
# Utilities
#-------------------------------------------------------------------------------
# Forward pass memory requirement
def print_model_memory_usage(batch_size, model):
shapes_mem_count = 0
for l in model.layers: #loop on layers
# print '---\n', l
# print 'out_shapes: ', str( l.output_shape ),
# print 'isList: ', type(l.output_shape) == type(list()),
# print 'isTuple: ', type(l.output_shape) == type(tuple())
all_output_shapes = l.output_shape
if type(all_output_shapes) != type(list()):
all_output_shapes = list( [all_output_shapes] )
for n_out in all_output_shapes:
single_layer_mem = 1
for s in n_out: #loop on outputs shape
if s is None:
continue
single_layer_mem *= s
# print 'single_layer_mem', single_layer_mem
shapes_mem_count+= single_layer_mem
shapes_mem_count += single_layer_mem
trainable_count = np.sum([K.count_params(p) for p in set(model.trainable_weights)])
non_trainable_count = np.sum([K.count_params(p) for p in set(model.non_trainable_weights)])
print 'Model file (MB): %4.2f' %(4 * (trainable_count + non_trainable_count) / 1024**2 )
print '#Trainable Params: ', trainable_count
print 'Layers(batch_size)=%d (MB): %4.2f' %(batch_size, 4.0*batch_size*shapes_mem_count/1024**2 )
total_memory = 4.0*(batch_size*shapes_mem_count + trainable_count + non_trainable_count) # 4 is multiplied because all the memoery is of data-type float32 (4 bytes)
print 'Total Memory(MB): %4.2f' %( total_memory/1024**2 )
# gbytes = np.round(total_memory / (1024.0 ** 3), 3)
# return gbytes
def print_flops_report(model):
# Batch need to be specified for flops number to be accurate.
import tensorflow as tf
run_meta = tf.RunMetadata()
opts = tf.profiler.ProfileOptionBuilder.float_operation()
# We use the Keras session graph in the call to the profiler.
flops = tf.profiler.profile(graph=K.get_session().graph,
run_meta=run_meta, cmd='op', options=opts)
print 'Total floating point operations (FLOPS) : ', flops.total_float_ops
print 'Total floating point operations (GFLOPS) : %4.3f' %( flops.total_float_ops/1000.**3 )
# return flops.total_float_ops # Prints the "flops" of the model.
#--------------------------------------------------------------------------------
# Data
#--------------------------------------------------------------------------------
# TODO : removal
def dataload_( n_tokyoTimeMachine, n_Pitssburg, nP, nN ):
D = []
if n_tokyoTimeMachine > 0 :
TTM_BASE = '/Bulk_Data/data_Akihiko_Torii/Tokyo_TM/tokyoTimeMachine/' #Path of Tokyo_TM
pr = TimeMachineRender( TTM_BASE )
print 'tokyoTimeMachine:: nP=', nP, '\tnN=', nN
for s in range(n_tokyoTimeMachine):
a,_ = pr.step(nP=nP, nN=nN, return_gray=False, resize=(320,240), apply_distortions=False, ENABLE_IMSHOW=False)
if s%100 == 0:
print 'get a sample Tokyo_TM #%d of %d\t' %(s, n_tokyoTimeMachine),
print a.shape
D.append( a )
if n_Pitssburg > 0 :
PTS_BASE = '/Bulk_Data/data_Akihiko_Torii/Pitssburg/'
pr = PittsburgRenderer( PTS_BASE )
print 'Pitssburg nP=', nP, '\tnN=', nN
for s in range(n_Pitssburg):
a,_ = pr.step(nP=nP, nN=nN, return_gray=False, resize=(240,320), apply_distortions=False, ENABLE_IMSHOW=False)
if s %100 == 0:
print 'get a sample Pitssburg #%d of %d\t' %(s, n_Pitssburg),
print a.shape
D.append( a )
return D
def do_augmentation( D ):
""" D : Nx(n+p+1)xHxWx3. Return N1x(n+p+1)xHxWx3 """
n_samples = D.shape[0]
n_images_per_sample = D.shape[1]
im_rows = D.shape[2]
im_cols = D.shape[3]
im_chnl = D.shape[4]
E = D.reshape( n_samples*n_images_per_sample, im_rows,im_cols,im_chnl )
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
# Very basic
if True:
seq = iaa.Sequential([
sometimes( iaa.Crop(px=(0, 50)) ), # crop images from each side by 0 to 16px (randomly chosen)
# iaa.Fliplr(0.5), # horizontally flip 50% of the images
iaa.GaussianBlur(sigma=(0, 3.0)), # blur images with a sigma of 0 to 3.0
sometimes( iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8)
) )
])
seq_vbasic = seq
# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
# e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
# Typical
if True:
seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontal flips
iaa.Crop(percent=(0, 0.1)), # random crops
# Small gaussian blur with random sigma between 0 and 0.5.
# But we only blur about 50% of all images.
iaa.Sometimes(0.5,
iaa.GaussianBlur(sigma=(0, 0.5))
),
# Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),
# Add gaussian noise.
# For 50% of all images, we sample the noise once per pixel.
# For the other 50% of all images, we sample the noise per pixel AND
# channel. This can change the color (not only brightness) of the
# pixels.
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
# Make some images brighter and some darker.
# In 20% of all cases, we sample the multiplier once per channel,
# which can end up changing the color of the images.
iaa.Multiply((0.8, 1.2), per_channel=0.2),
# Apply affine transformations to each image.
# Scale/zoom them, translate/move them, rotate them and shear them.
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8)
)
], random_order=True) # apply augmenters in random order
# seq = sometimes( seq )
seq_typical = seq
# Heavy
if True:
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
seq = iaa.Sequential(
[
# apply the following augmenters to most images
iaa.Fliplr(0.2), # horizontally flip 20% of all images
iaa.Flipud(0.2), # vertically flip 20% of all images
# crop images by -5% to 10% of their height/width
sometimes(iaa.CropAndPad(
percent=(-0.05, 0.1),
pad_mode=ia.ALL,
pad_cval=(0, 255)
)),
sometimes(iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
cval=(0, 255), # if mode is constant, use a cval between 0 and 255
mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
#iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges,
# blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha(iaa.OneOf([
iaa.EdgeDetect(alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
# either change the brightness of the whole image (sometimes
# per channel) or change the brightness of subareas
iaa.OneOf([
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.ContrastNormalization((0.5, 2.0))
)
]),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
iaa.Grayscale(alpha=(0.0, 1.0)),
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))), # sometimes move parts of the image around
sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
],
random_order=True
)
],
random_order=True
)
seq_heavy = seq
print 'Add data'
L = [E]
print 'seq_vbasic'
L.append( seq_vbasic.augment_images(E) )
print 'seq_typical'
L.append( seq_typical.augment_images(E) )
print 'seq_typical'
L.append( seq_typical.augment_images(E) )
print 'seq_heavy'
L.append( seq_heavy.augment_images(E) )
G = [ l.reshape(n_samples, n_images_per_sample, im_rows,im_cols,im_chnl) for l in L ]
G = np.concatenate( G )
print 'Input.shape ', D.shape, '\tOutput.shape ', G.shape
return G
# for j in range(n_times):
# images_aug = seq.augment_images(E)
# # L.append( images_aug.reshape( n_samples, n_images_per_sample, im_rows,im_cols,im_chnl ) )
# L.append( images_aug )
# code.interact( local=locals() )
return L
def do_typical_data_aug( D ):
""" D : Nx(n+p+1)xHxWx3. Return N1x(n+p+1)xHxWx3 """
D = np.array( D )
assert( len(D.shape) == 5 )
print '[do_typical_data_aug]', 'D.shape=', D.shape
n_samples = D.shape[0]
n_images_per_sample = D.shape[1]
im_rows = D.shape[2]
im_cols = D.shape[3]
im_chnl = D.shape[4]
E = D.reshape( n_samples*n_images_per_sample, im_rows,im_cols,im_chnl )
sometimes = lambda aug: iaa.Sometimes(0.5, aug)
sometimes_2 = lambda aug: iaa.Sometimes(0.2, aug)
seq = iaa.Sequential( [
#iaa.Fliplr(0.5), # horizontal flips
#iaa.Crop(percent=(0, 0.1)), # random crops
# Small gaussian blur with random sigma between 0 and 0.5.
# But we only blur about 50% of all images.
iaa.Sometimes(0.5,
iaa.GaussianBlur(sigma=(0, 0.5))
),
# Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),
# Add gaussian noise.
# For 50% of all images, we sample the noise once per pixel.
# For the other 50% of all images, we sample the noise per pixel AND
# channel. This can change the color (not only brightness) of the
# pixels.
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
# Make some images brighter and some darker.
# In 20% of all cases, we sample the multiplier once per channel,
# which can end up changing the color of the images.
iaa.Multiply((0.8, 1.2), per_channel=0.2),
# Apply affine transformations to each image.
# Scale/zoom them, translate/move them, rotate them and shear them.
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-45, 45),
shear=(-8, 8)
)
], random_order=True) # apply augmenters in random order
D = seq.augment_images(E)
D = D.reshape(n_samples, n_images_per_sample, im_rows,im_cols,im_chnl)
print '[do_typical_data_aug] Done...!', 'D.shape=', D.shape
return D
#---------------------------------------------------------------------------------
# My Layers
# NetVLADLayer
#---------------------------------------------------------------------------------
# Writing your own custom layers
class MyLayer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(MyLayer, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
super(MyLayer, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
return [K.dot(x, self.kernel), K.dot(x, self.kernel)]
def compute_output_shape(self, input_shape):
return [(input_shape[0], self.output_dim), (input_shape[0], self.output_dim)]
class NetVLADLayer( Layer ):
def __init__( self, num_clusters, **kwargs ):
self.num_clusters = num_clusters
super(NetVLADLayer, self).__init__(**kwargs)
def build( self, input_shape ):
self.K = self.num_clusters
self.D = input_shape[-1]
self.kernel = self.add_weight( name='kernel',
shape=(1,1,self.D,self.K),
initializer='uniform',
trainable=True )
self.bias = self.add_weight( name='bias',
shape=(1,1,self.K),
initializer='uniform',
trainable=True )
self.C = self.add_weight( name='cluster_centers',
shape=[1,1,1,self.D,self.K],
initializer='uniform',
trainable=True)
def call( self, x ):
# soft-assignment.
s = K.conv2d( x, self.kernel, padding='same' ) + self.bias
a = K.softmax( s )
self.amap = K.argmax( a, -1 )
# print 'amap.shape', self.amap.shape
# Dims used hereafter: batch, H, W, desc_coeff, cluster
a = K.expand_dims( a, -2 )
# print 'a.shape=',a.shape
# Core
v = K.expand_dims(x, -1) + self.C
# print 'v.shape', v.shape
v = a * v
# print 'v.shape', v.shape
v = K.sum(v, axis=[1, 2])
# print 'v.shape', v.shape
v = K.permute_dimensions(v, pattern=[0, 2, 1])
# print 'v.shape', v.shape
#v.shape = None x K x D
# Normalize v (Intra Normalization)
v = K.l2_normalize( v, axis=-1 )
v = K.batch_flatten( v )
v = K.l2_normalize( v, axis=-1 )
# return [v, self.amap]
return v
def compute_output_shape( self, input_shape ):
# return [(input_shape[0], self.K*self.D ), (input_shape[0], input_shape[1], input_shape[2]) ]
return (input_shape[0], self.K*self.D )
def get_config( self ):
pass
# base_config = super(NetVLADLayer, self).get_config()
# return dict(list(base_config.items()))
# As suggested by: https://github.com/keras-team/keras/issues/4871#issuecomment-269731817
config = {'num_clusters': self.num_clusters}
base_config = super(NetVLADLayer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
#--------------------------------------------------------------------------------
# Base CNNs
#--------------------------------------------------------------------------------
def make_vgg( input_img ):
r_l2=keras.regularizers.l2(0.01)
r_l1=keras.regularizers.l1(0.01)
x_64 = keras.layers.Conv2D( 64, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( input_img )
x_64 = keras.layers.normalization.BatchNormalization()( x_64 )
x_64 = keras.layers.Conv2D( 64, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_64 )
x_64 = keras.layers.normalization.BatchNormalization()( x_64 )
x_64 = keras.layers.MaxPooling2D( pool_size=(2,2), padding='same' )( x_64 )
x_128 = keras.layers.Conv2D( 128, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_64 )
x_128 = keras.layers.normalization.BatchNormalization()( x_128 )
x_128 = keras.layers.Conv2D( 128, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_128 )
x_128 = keras.layers.normalization.BatchNormalization()( x_128 )
x_128 = keras.layers.MaxPooling2D( pool_size=(2,2), padding='same' )( x_128 )
# x_256 = keras.layers.Conv2D( 256, (3,3), padding='same', activation='relu' )( x_128 )
# x_256 = keras.layers.normalization.BatchNormalization()( x_256 )
# x_256 = keras.layers.Conv2D( 256, (3,3), padding='same', activation='relu' )( x_256 )
# x_256 = keras.layers.normalization.BatchNormalization()( x_256 )
# x_256 = keras.layers.MaxPooling2D( pool_size=(2,2), padding='same' )( x_256 )
#
# x_512 = keras.layers.Conv2D( 512, (3,3), padding='same', activation='relu' )( x_256 )
# # BN
# x_512 = keras.layers.Conv2D( 512, (3,3), padding='same', activation='relu' )( x_512 )
# # BN
# x_512 = keras.layers.MaxPooling2D( pool_size=(2,2), padding='same' )( x_512 )
x = keras.layers.Conv2DTranspose( 32, (5,5), strides=4, padding='same' )( x_128 )
# x = x_128
return x
def make_upsampling_vgg( input_img ):
r_l2=keras.regularizers.l2(0.01)
r_l1=keras.regularizers.l1(0.01)
x_64 = keras.layers.Conv2D( 64, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( input_img )
x_64 = keras.layers.normalization.BatchNormalization()( x_64 )
x_64 = keras.layers.Conv2D( 64, (3,3), strides=2, padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_64 )
x_64 = keras.layers.normalization.BatchNormalization()( x_64 )
x_128 = keras.layers.Conv2D( 128, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_64 )
x_128 = keras.layers.normalization.BatchNormalization()( x_128 )
x_128 = keras.layers.Conv2D( 128, (3,3), strides=2, padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_128 )
x_128 = keras.layers.normalization.BatchNormalization()( x_128 )
x_256 = keras.layers.Conv2D( 128, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_128 )
x_256 = keras.layers.normalization.BatchNormalization()( x_256 )
x_256 = keras.layers.Conv2D( 128, (3,3), strides=2, padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_256 )
x_256 = keras.layers.normalization.BatchNormalization()( x_256 )
z = keras.layers.Conv2DTranspose( 32, (11,11), strides=8, padding='same' )( x_256 )
x = keras.layers.Conv2DTranspose( 32, (9,9), strides=4, padding='same' )( x_128 )
y = keras.layers.Conv2DTranspose( 32, (7,7), strides=2, padding='same' )( x_64 )
out = keras.layers.Add()( [x,y,z] )
return out
def make_from_vgg19_multiconvup( input_img, trainable=True ):
base_model = keras.applications.vgg19.VGG19(weights='imagenet', include_top=False, input_tensor=input_img)
for l in base_model.layers:
l.trainable = trainable
#TODO : add kernel regularizers and activity_regularizer to conv layers
base_model_out = base_model.get_layer('block2_pool').output
up_conv_out = keras.layers.Conv2DTranspose( 32, (9,9), strides=2, padding='same', activation='relu' )( base_model_out )
up_conv_out = keras.layers.normalization.BatchNormalization()( up_conv_out )
up_conv_out = keras.layers.Conv2DTranspose( 32, (9,9), strides=2, padding='same', activation='relu' )( up_conv_out )
up_conv_out = keras.layers.normalization.BatchNormalization()( up_conv_out )
return up_conv_out
def make_from_mobilenet( input_img, weights='imagenet', trainable=True, kernel_regularizer=keras.regularizers.l2(0.0001), layer_name='conv_pw_7_relu' ):
# input_img = keras.layers.BatchNormalization()(input_img)
base_model = keras.applications.mobilenet.MobileNet( weights=weights, include_top=False, input_tensor=input_img )
for l in base_model.layers:
l.trainable = trainable
# Add Regularizers
if kernel_regularizer is not None:
for layer in base_model.layers:
if 'kernel_regularizer' in dir( layer ):
# layer.kernel_regularizer = keras.regularizers.l2(0.001)
layer.kernel_regularizer = kernel_regularizer
# Pull out a layer from original network
base_model_out = base_model.get_layer( layer_name ).output # can also try conv_pw_7_relu etc.
return base_model_out
def make_from_vgg19( input_img, weights='imagenet', trainable=True, layer_name='block2_pool' ):
base_model = keras.applications.vgg19.VGG19(weights=weights, include_top=False, input_tensor=input_img)
for l in base_model.layers:
l.trainable = trainable
base_model_out = base_model.get_layer(layer_name).output
return base_model_out
# Removal. TODO: Not more in use.
# z = keras.layers.Conv2DTranspose( 32, (9,9), strides=4, padding='same' )( base_model_out )
# return z
def make_from_vgg16( input_img, weights='imagenet', trainable=True, kernel_regularizer=keras.regularizers.l2(0.0001), layer_name='block2_pool' ):
base_model = keras.applications.vgg16.VGG16(weights=weights, include_top=False, input_tensor=input_img)
for l in base_model.layers:
l.trainable = trainable
# Add Regularizers
if kernel_regularizer is not None:
for layer in base_model.layers:
if 'kernel_regularizer' in dir( layer ):
# layer.kernel_regularizer = keras.regularizers.l2(0.001)
layer.kernel_regularizer = kernel_regularizer
base_model_out = base_model.get_layer(layer_name).output
return base_model_out