Skip to content

Commit

Permalink
data augmentation with external library. got rid of custom dataaugmen…
Browse files Browse the repository at this point in the history
…tation. added dependence on imgaug
  • Loading branch information
mpkuse committed Oct 10, 2018
1 parent 9e15a8d commit cdd03dc
Show file tree
Hide file tree
Showing 8 changed files with 629 additions and 31 deletions.
208 changes: 208 additions & 0 deletions CustomNets.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,176 @@

import cv2

from imgaug import augmenters as iaa
import imgaug as ia


def do_augmentation( D ):
""" D : Nx(n+p+1)xHxWx3. Return N1x(n+p+1)xHxWx3 """

n_samples = D.shape[0]
n_images_per_sample = D.shape[1]

im_rows = D.shape[2]
im_cols = D.shape[3]
im_chnl = D.shape[4]

E = D.reshape( n_samples*n_images_per_sample, im_rows,im_cols,im_chnl )


sometimes = lambda aug: iaa.Sometimes(0.5, aug)

# Very basic
if True:
seq = iaa.Sequential([
sometimes( iaa.Crop(px=(0, 50)) ), # crop images from each side by 0 to 16px (randomly chosen)
# iaa.Fliplr(0.5), # horizontally flip 50% of the images
iaa.GaussianBlur(sigma=(0, 3.0)), # blur images with a sigma of 0 to 3.0
sometimes( iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8)
) )
])
seq_vbasic = seq

# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
# e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.

# Typical
if True:
seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontal flips
iaa.Crop(percent=(0, 0.1)), # random crops
# Small gaussian blur with random sigma between 0 and 0.5.
# But we only blur about 50% of all images.
iaa.Sometimes(0.5,
iaa.GaussianBlur(sigma=(0, 0.5))
),
# Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),
# Add gaussian noise.
# For 50% of all images, we sample the noise once per pixel.
# For the other 50% of all images, we sample the noise per pixel AND
# channel. This can change the color (not only brightness) of the
# pixels.
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
# Make some images brighter and some darker.
# In 20% of all cases, we sample the multiplier once per channel,
# which can end up changing the color of the images.
iaa.Multiply((0.8, 1.2), per_channel=0.2),
# Apply affine transformations to each image.
# Scale/zoom them, translate/move them, rotate them and shear them.
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
rotate=(-25, 25),
shear=(-8, 8)
)
], random_order=True) # apply augmenters in random order
# seq = sometimes( seq )
seq_typical = seq

# Heavy
if True:
# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
seq = iaa.Sequential(
[
# apply the following augmenters to most images
iaa.Fliplr(0.2), # horizontally flip 20% of all images
iaa.Flipud(0.2), # vertically flip 20% of all images
# crop images by -5% to 10% of their height/width
sometimes(iaa.CropAndPad(
percent=(-0.05, 0.1),
pad_mode=ia.ALL,
pad_cval=(0, 255)
)),
sometimes(iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, # translate by -20 to +20 percent (per axis)
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
cval=(0, 255), # if mode is constant, use a cval between 0 and 255
mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples)
)),
# execute 0 to 5 of the following (less important) augmenters per image
# don't execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
sometimes(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representation
iaa.OneOf([
iaa.GaussianBlur((0, 3.0)), # blur images with a sigma between 0 and 3.0
iaa.AverageBlur(k=(2, 7)), # blur image using local means with kernel sizes between 2 and 7
#iaa.MedianBlur(k=(3, 11)), # blur image using local medians with kernel sizes between 2 and 7
]),
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
# search either for all edges or for directed edges,
# blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha(iaa.OneOf([
iaa.EdgeDetect(alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect(alpha=(0.5, 1.0), direction=(0.0, 1.0)),
])),
iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5), # add gaussian noise to images
iaa.OneOf([
iaa.Dropout((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
]),
iaa.Invert(0.05, per_channel=True), # invert color channels
iaa.Add((-10, 10), per_channel=0.5), # change brightness of images (by -10 to 10 of original value)
iaa.AddToHueAndSaturation((-20, 20)), # change hue and saturation
# either change the brightness of the whole image (sometimes
# per channel) or change the brightness of subareas
iaa.OneOf([
iaa.Multiply((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha(
exponent=(-4, 0),
first=iaa.Multiply((0.5, 1.5), per_channel=True),
second=iaa.ContrastNormalization((0.5, 2.0))
)
]),
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
iaa.Grayscale(alpha=(0.0, 1.0)),
sometimes(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)), # move pixels locally around (with random strengths)
sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.05))), # sometimes move parts of the image around
sometimes(iaa.PerspectiveTransform(scale=(0.01, 0.1)))
],
random_order=True
)
],
random_order=True
)
seq_heavy = seq

print 'Add data'
L = [E]
print 'seq_vbasic'
L.append( seq_vbasic.augment_images(E) )
print 'seq_typical'
L.append( seq_typical.augment_images(E) )
print 'seq_typical'
L.append( seq_typical.augment_images(E) )
print 'seq_heavy'
L.append( seq_heavy.augment_images(E) )

G = [ l.reshape(n_samples, n_images_per_sample, im_rows,im_cols,im_chnl) for l in L ]
G = np.concatenate( G )
print 'Input.shape ', D.shape, '\tOutput.shape ', G.shape
return G

# for j in range(n_times):
# images_aug = seq.augment_images(E)
# # L.append( images_aug.reshape( n_samples, n_images_per_sample, im_rows,im_cols,im_chnl ) )
# L.append( images_aug )

# code.interact( local=locals() )
return L



# Writing your own custom layers
Expand Down Expand Up @@ -135,3 +305,41 @@ def make_vgg( input_img ):
# x = x_128

return x


def make_upsampling_vgg( input_img ):
r_l2=keras.regularizers.l2(0.01)
r_l1=keras.regularizers.l1(0.01)

x_64 = keras.layers.Conv2D( 64, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( input_img )
x_64 = keras.layers.normalization.BatchNormalization()( x_64 )
x_64 = keras.layers.Conv2D( 64, (3,3), strides=2, padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_64 )
x_64 = keras.layers.normalization.BatchNormalization()( x_64 )

x_128 = keras.layers.Conv2D( 128, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_64 )
x_128 = keras.layers.normalization.BatchNormalization()( x_128 )
x_128 = keras.layers.Conv2D( 128, (3,3), strides=2, padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_128 )
x_128 = keras.layers.normalization.BatchNormalization()( x_128 )

x_256 = keras.layers.Conv2D( 128, (3,3), padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_128 )
x_256 = keras.layers.normalization.BatchNormalization()( x_256 )
x_256 = keras.layers.Conv2D( 128, (3,3), strides=2, padding='same', activation='relu', kernel_regularizer=r_l2, activity_regularizer=r_l1 )( x_256 )
x_256 = keras.layers.normalization.BatchNormalization()( x_256 )

z = keras.layers.Conv2DTranspose( 32, (11,11), strides=8, padding='same' )( x_256 )
x = keras.layers.Conv2DTranspose( 32, (9,9), strides=4, padding='same' )( x_128 )
y = keras.layers.Conv2DTranspose( 32, (7,7), strides=2, padding='same' )( x_64 )

out = keras.layers.Add()( [x,y,z] )
return out

def make_from_vgg19( input_img, trainable=True ):
base_model = keras.applications.vgg19.VGG19(weights='imagenet', include_top=False, input_tensor=input_img)

for l in base_model.layers:
l.trainable = trainable

base_model_out = base_model.get_layer('block2_pool').output

z = keras.layers.Conv2DTranspose( 32, (9,9), strides=4, padding='same' )( base_model_out )
return z
63 changes: 63 additions & 0 deletions WalksRenderer.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,12 +20,74 @@
import code
import math
import glob
import pickle

#
import TerminalColors
tcolor = TerminalColors.bcolors()


class WalksRendererOnline:
def __init__( self, db_path ):
self.db_path = db_path
print tcolor.OKGREEN, 'WalksRenderer.db_path : ', db_path, tcolor.ENDC

print tcolor.OKBLUE, 'Video Files : ', tcolor.ENDC
self.all_files = []
for _i, file_name in enumerate( glob.glob( db_path+"/*.mkv" ) + glob.glob( db_path+"/*.mp4" )):
print file_name
self.all_files.append( file_name )

def proc_vfile( self, vfilename ):
# vfilename = 'Amsterdam.mkv'
# vfilename = self.all_files[5]
print 'vfilename = ', vfilename
txt = np.loadtxt( vfilename+'.txt', delimiter=',', dtype='int32' )
cap = cv2.VideoCapture( vfilename )
assert( cap.isOpened() )
nFrames = cap.get( cv2.CAP_PROP_FRAME_COUNT )

L = [ [txt[0]] ]
for i in range( txt.shape[0]-1 ):
if abs(txt[i+1,0] - txt[i,0]) < 500:
L[-1].append( txt[i+1] )
else:
L.append( [txt[i+1] ] )

# code.interact( local=locals() )

print 'nSegments = ', len(L)
for l in L:
l = np.array( l )
# print l
print 'len_of_this_seg=', len(l)


cap.set( cv2.CAP_PROP_POS_FRAMES, l[0,0] )
ret, frame0 = cap.read()
IM0 = cv2.resize( cv2.blur(frame0, (5,5)), (320,240) )#, fx=0.2, fy=0.2 )


cap.set( cv2.CAP_PROP_POS_FRAMES, l[0,1] )
ret, frame1 = cap.read()
IM1 = cv2.resize( cv2.blur(frame1, (5,5)), (320,240) )#, fx=0.2, fy=0.2 )


cv2.imshow( 'frame0', IM0 )
cv2.imshow( 'frame1', IM1 )
cv2.waitKey(0)




def proc(self):
c = self.proc_vfile( self.all_files[-4] )






class WalksRenderer:
def __init__( self, db_path ):
self.db_path = db_path
Expand Down Expand Up @@ -124,6 +186,7 @@ def step( self, nP, nN, return_gray=False):
_different = self._query( nN )



startLoad = time.time()
images_q = self._load_images( _q )
images_sim = self._load_images(_sims, apply_distortions=True)
Expand Down
Binary file modified core.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified core_t.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit cdd03dc

Please sign in to comment.