-
Notifications
You must be signed in to change notification settings - Fork 0
/
xxhash32.go
214 lines (180 loc) · 4.45 KB
/
xxhash32.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
package id
import (
"hash"
"math/rand"
)
const (
prime32_1 = 2654435761
prime32_2 = 2246822519
prime32_3 = 3266489917
prime32_4 = 668265263
prime32_5 = 374761393
)
type xxHash struct {
seed uint32
v1 uint32
v2 uint32
v3 uint32
v4 uint32
totalLen uint64
buf [16]byte
bufused int
}
func NewXXHash32() hash.Hash32 {
return NewXXHash32WithSeed(rand.Uint32())
}
func NewXXHash32WithSeed(seed uint32) hash.Hash32 {
xxh := &xxHash{seed: seed}
xxh.Reset()
return xxh
}
func (xxh xxHash) Sum(b []byte) []byte {
h32 := xxh.Sum32()
return append(b, byte(h32), byte(h32>>8), byte(h32>>16), byte(h32>>24))
}
// Reset resets the Hash to its initial state.
func (xxh *xxHash) Reset() {
xxh.v1 = xxh.seed + prime32_1 + prime32_2
xxh.v2 = xxh.seed + prime32_2
xxh.v3 = xxh.seed
xxh.v4 = xxh.seed - prime32_1
xxh.totalLen = 0
xxh.bufused = 0
}
// Size returns the number of bytes returned by Sum().
func (xxh *xxHash) Size() int {
return 4
}
// BlockSize gives the minimum number of bytes accepted by Write().
func (xxh *xxHash) BlockSize() int {
return 1
}
// Write adds input bytes to the Hash.
// It never returns an error.
func (xxh *xxHash) Write(input []byte) (int, error) {
n := len(input)
m := xxh.bufused
xxh.totalLen += uint64(n)
r := len(xxh.buf) - m
if n < r {
copy(xxh.buf[m:], input)
xxh.bufused += len(input)
return n, nil
}
p := 0
if m > 0 {
// some data left from previous update
copy(xxh.buf[xxh.bufused:], input[:r])
xxh.bufused += len(input) - r
// fast rotl(13)
xxh.v1 = rol13(xxh.v1+u32(xxh.buf[:])*prime32_2) * prime32_1
xxh.v2 = rol13(xxh.v2+u32(xxh.buf[4:])*prime32_2) * prime32_1
xxh.v3 = rol13(xxh.v3+u32(xxh.buf[8:])*prime32_2) * prime32_1
xxh.v4 = rol13(xxh.v4+u32(xxh.buf[12:])*prime32_2) * prime32_1
p = r
xxh.bufused = 0
}
// Causes compiler to work directly from registers instead of stack:
v1, v2, v3, v4 := xxh.v1, xxh.v2, xxh.v3, xxh.v4
for n := n - 16; p <= n; p += 16 {
sub := input[p:][:16] //BCE hint for compiler
v1 = rol13(v1+u32(sub[:])*prime32_2) * prime32_1
v2 = rol13(v2+u32(sub[4:])*prime32_2) * prime32_1
v3 = rol13(v3+u32(sub[8:])*prime32_2) * prime32_1
v4 = rol13(v4+u32(sub[12:])*prime32_2) * prime32_1
}
xxh.v1, xxh.v2, xxh.v3, xxh.v4 = v1, v2, v3, v4
copy(xxh.buf[xxh.bufused:], input[p:])
xxh.bufused += len(input) - p
return n, nil
}
// Sum32 returns the 32 bits Hash value.
func (xxh *xxHash) Sum32() uint32 {
h32 := uint32(xxh.totalLen)
if xxh.totalLen >= 16 {
h32 += rol1(xxh.v1) + rol7(xxh.v2) + rol12(xxh.v3) + rol18(xxh.v4)
} else {
h32 += xxh.seed + prime32_5
}
p := 0
n := xxh.bufused
for n := n - 4; p <= n; p += 4 {
h32 += u32(xxh.buf[p:p+4]) * prime32_3
h32 = rol17(h32) * prime32_4
}
for ; p < n; p++ {
h32 += uint32(xxh.buf[p]) * prime32_5
h32 = rol11(h32) * prime32_1
}
h32 ^= h32 >> 15
h32 *= prime32_2
h32 ^= h32 >> 13
h32 *= prime32_3
h32 ^= h32 >> 16
return h32
}
// Checksum returns the 32bits Hash value.
func Checksum(input []byte, seed uint32) uint32 {
n := len(input)
h32 := uint32(n)
if n < 16 {
h32 += seed + prime32_5
} else {
v1 := seed + prime32_1 + prime32_2
v2 := seed + prime32_2
v3 := seed
v4 := seed - prime32_1
p := 0
for n := n - 16; p <= n; p += 16 {
sub := input[p:][:16] //BCE hint for compiler
v1 = rol13(v1+u32(sub[:])*prime32_2) * prime32_1
v2 = rol13(v2+u32(sub[4:])*prime32_2) * prime32_1
v3 = rol13(v3+u32(sub[8:])*prime32_2) * prime32_1
v4 = rol13(v4+u32(sub[12:])*prime32_2) * prime32_1
}
input = input[p:]
n -= p
h32 += rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4)
}
p := 0
for n := n - 4; p <= n; p += 4 {
h32 += u32(input[p:p+4]) * prime32_3
h32 = rol17(h32) * prime32_4
}
for p < n {
h32 += uint32(input[p]) * prime32_5
h32 = rol11(h32) * prime32_1
p++
}
h32 ^= h32 >> 15
h32 *= prime32_2
h32 ^= h32 >> 13
h32 *= prime32_3
h32 ^= h32 >> 16
return h32
}
func u32(buf []byte) uint32 {
// go compiler recognizes this pattern and optimizes it on little endian platforms
return uint32(buf[0]) | uint32(buf[1])<<8 | uint32(buf[2])<<16 | uint32(buf[3])<<24
}
func rol1(u uint32) uint32 {
return u<<1 | u>>31
}
func rol7(u uint32) uint32 {
return u<<7 | u>>25
}
func rol11(u uint32) uint32 {
return u<<11 | u>>21
}
func rol12(u uint32) uint32 {
return u<<12 | u>>20
}
func rol13(u uint32) uint32 {
return u<<13 | u>>19
}
func rol17(u uint32) uint32 {
return u<<17 | u>>15
}
func rol18(u uint32) uint32 {
return u<<18 | u>>14
}