Skip to content

YoloV5模型简化部署, 方便在OpenCV里面调用。

License

Notifications You must be signed in to change notification settings

mushroom-x/yolov5-simple

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YoloV5模型简化部署(yolov5-simple)

[toc]

yolov5-simple是做啥的?

YoloV5 的工程包含很多内容,例如模型训练、模型评估、模型测试以及可视化相关的内容。在部署的时候只需要用到YoloV5中的模型推理相关的内容,其他的依赖用不到。另外YoloV5目标检测的代码,过于冗杂,需要进行裁剪。 因此阿凯帮大家开发了一个简易版本的YoloV5的库 yolov5-simple , 用最简单的方式来调用YoloV5目标检测模型。

image-20211207163507015

效果视频: Mirobot螺丝螺母分拣-深度学习机械臂抓取-YoloV5目标检测

配置YoloV5模型

yolov5/runs 里训练得到的模型文件重命名, 例如nut_and_screw_yolov5n.pt

然后将模型文件放置到yolov5_simple/weights/中。

修改模型配置文件

config/yolov5.yaml

####################################
## YoloV5模型卡片识别20类 配置文件
####################################
# YoloV5模型权重路径
weight:  "weights/nut_and_screw_yolov5n.pt"
# 输入图像的尺寸
input_size: 640
# 类别个数
class_num:  2
# 标签名称
class_name:  ["nut", "screw"]
# 标签类的中文名称
class_name_cn: ["螺母", "螺丝"]
# 阈值设置
threshold:
  iou: 0.8
  confidence: 0.6
# 计算设备
# - cpu
# - 0 <- 使用GPU
device: 'cpu'

配置相机参数

修改配置文件config/camera.yaml

#############################
## 相机的默认参数
#############################
# 摄像头的设备号
# 默认为 0:  /dev/video0
device: 0  
# 画面宽度
img_width: 1920
# 画面高度 
img_height: 1080
# 相机帧率
fps: 30
# 图像缓冲区的尺寸
buffer_size: 2

执行脚本

执行YoloV5的实验脚本

python yolov5.py

API使用说明

创建模型

# YOLOV5模型配置文件(YAML格式)的路径 yolov5_yaml_path
model = YoloV5(yolov5_yaml_path='config/yolov5.yaml')

目标检测

# YoloV5 目标检测
canvas, class_id_list, xyxy_list, conf_list  = model.detect(img)
  • canvas : 画布

    在原图的基础上绘制矩形框,类别,置信度。

  • class_id_list: 检测到的类别ID列表

  • xyxy_list: 检测到物体矩形框的列表

    矩形框的格式为 $[x_1, y_1, x_2, y_2]$ , 其中 $(x_1, y_1)$ 是矩形框左上角的点坐标, $(x_2, y_2)$ 是右下角的坐标。

    求解物体矩形框中心点的坐标的公式为: $$ cx = \frac{x_1 + x_2}{2} $$

    $$ cy = \frac{y_1 + y_2}{2} $$

  • conf_list: 置信度列表

联系阿凯

作者: 阿凯爱玩机器人

微信: xingshunkai | QQ:244561792 | 邮箱: xingshunkai@qq.com

About

YoloV5模型简化部署, 方便在OpenCV里面调用。

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages