Skip to content

Deploy a simple ml workload (object detection) and scale it with kubernetes

License

Notifications You must be signed in to change notification settings

muzammil360/ml-kubernetes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

Goal is to deploy a simple ML workload (object detection) and scale it using kubernetes

Getting started with development

installation

# make new venv
python -m venv E:\venvs\ml-kubernetes
# activate venv
E:\venvs\ml-kubernetes\Scripts\activate.bat

running in dev

cd api && uvicorn server:app --reload

runnning tests

cd api && pytest

Notes

dependencies

  • fastapi
  • "uvicorn[standard]" # server
  • httpx # http client for testing
  • pytest # test framework
  • pytest-asyncio # for async functions
  • opencv # for yolo
  • requests # for downloading model
  • python-multipart # for file upload handling

dev dependencies

  • flake8 # code linting
  • black # code formatting

useful commands

cd api && pip freeze > requirements.txt

Next steps

  • learn more about python modules
    • how init.py helps?
    • different b/w relative and abs imports

About

Deploy a simple ml workload (object detection) and scale it with kubernetes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published