-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgui_chatbot.py
119 lines (101 loc) · 3.98 KB
/
gui_chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import json
import os
import pickle
import random
import nltk
import numpy as np
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
try:
model = load_model('chatbot_model.h5')
except OSError:
print("Getting the system ready for the first use.............")
os.system("python train_chatbot.py")
model = load_model('chatbot_model.h5')
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words.pkl', 'rb'))
classes = pickle.load(open('classes.pkl', 'rb'))
def clean_up_sentence(sentence):
# tokenize the pattern - split words into array
sentence_words = nltk.word_tokenize(sentence)
# stem each word - create short form for word
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0] * len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print("found in bag: %s" % w)
return (np.array(bag))
def predict_class(sentence, model):
# filter out predictions below a threshold
p = bow(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
def getResponse(ints, intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if (i['tag'] == tag):
result = random.choice(i['responses'])
break
return result
def chatbot_response(text):
ints = predict_class(text, model)
res = getResponse(ints, intents)
return res
# Creating GUI with tkinter
from tkinter import *
def send():
msg = EntryBox.get("1.0", 'end-1c').strip()
EntryBox.delete("0.0", END)
if msg != '':
ChatLog.config(state=NORMAL)
ChatLog.insert(END, "You: " + msg + '\n\n')
ChatLog.config(foreground="#442265", font=("Verdana", 12))
if (msg.lower()=='exit' or msg.lower()=='bye'):
exit()
res = chatbot_response(msg)
ChatLog.insert(END, "Help Bot: " + res + '\n\n')
ChatLog.config(state=DISABLED)
ChatLog.yview(END)
base = Tk()
base.title("Welcome")
base.geometry("400x500")
base.resizable(width=FALSE, height=FALSE)
# Create Chat window
ChatLog = Text(base, bd=0, bg="white", height="8", width="50", font="Arial")
ChatLog.config(state=DISABLED)
# Bind scrollbar to Chat window
scrollbar = Scrollbar(base, command=ChatLog.yview, cursor="arrow")
ChatLog['yscrollcommand'] = scrollbar.set
# Create Button to send message
SendButton = Button(base, font=("Verdana", 12, 'bold'), text="Send", width="12", height=5, bd=0, bg="#32de97",
activebackground="#3c9d9b", fg='#ffffff', command=send)
# lambda funtion to make enter key as send key
base.bind("<Return>", (lambda event: send()))
# Create the box to enter message
EntryBox = Text(base, bd=0, bg="white", width="29", height="5", font="Arial")
# EntryBox.bind("<Return>", send)
# Place all components on the screen
scrollbar.place(x=376, y=6, height=386)
ChatLog.place(x=6, y=6, height=386, width=370)
EntryBox.place(x=128, y=401, height=90, width=265)
SendButton.place(x=6, y=401, height=90)
base.mainloop()