-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_map.c
238 lines (213 loc) · 6.02 KB
/
neural_map.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "data.h"
#include "formulas.h"
#include "neural_map.h"
//Initialise le nbre de ligne/colonne
grille initGrid(int nb_neurone)
{
int nb_column = 10;
int nb_ligne;
double tmp;
while(nb_neurone - nb_column >0)
nb_column *= 10;
nb_column /= 10;
//printf("\n base:%d\n", nb_column);
if(nb_column > 10)
nb_column = nb_column/10;
else if(nb_column > 100)
nb_column = nb_column/100;
else if(nb_column > 1000)
nb_column = nb_column/1000;
else if(nb_column > 10000)
nb_column = nb_column/10000;
tmp = (double)nb_neurone/nb_column;
nb_ligne = (int) ceil(tmp);
grille test;
test.nb_voisin = malloc(sizeof(size_t));
test._rect = (int **)malloc(sizeof(int*)*nb_ligne);
test.nb_line = nb_ligne;
test.nb_column = nb_column;
int y, i, z;
for(i = 0, z = 0; i < test.nb_line; i++)
{
test._rect[i] = (int*)malloc(sizeof(int)*nb_column);
for(y = 0; y < test.nb_column; y++)
{
test._rect[i][y] = (int) z++;
}
}
return test;
}
void resetGrid(int** grid, int nb_ligne, int nb_colonne)
{
int y, i, z;
for(i = 0, z = 0; i < nb_ligne; i++)
{
for(y = 0; y < nb_colonne; y++)
{
grid[i][y] = z;
z++;
}
}
}
void printGrid(int** grid, int nb_ligne, int nb_colonne)
{
int y, i;
for(i = 0; i < nb_ligne; i++)
{
if (i == 1)
printf(" ");
printf("\n");
for(y = 0; y < nb_colonne; y++)
{
printf("%d ", grid[i][y]);
}
}
}
void initNeuralMap(neural_m** neural_map, double* vec_moyen, int nb_neurones)
{
for(int i = 0; i < nb_neurones; i++)
{
neural_map[i] = malloc(sizeof(neural_m*));
neural_map[i]->mem = malloc(sizeof(double) * 4);
for(int y = 0; y < 4; y++)
{
neural_map[i]->mem[y] = rand_double(vec_moyen[y], 0.02, 0.05);
}
}
}
void printVecNeuralMap(neural_m** neural_map, int nb_neurones)
{
printf("\nDONNEES DES NEURONES:\n");
for(int i = 0; i < nb_neurones; i++)
{
printf("n°%d| ", i+1);
for(int y = 0; y < 4; y++)
{
printf("%lf ", neural_map[i]->mem[y]);
}
printf("\n");
}
}
void printIntVec(int* indice_voisins, size_t size)
{
printf("\n");
for(int i = 0;i < size; i++)
{
if(i%5 == 0)
printf("\n");
printf("%d ", indice_voisins[i]);
}
}
//Retourne la liste des voisins du BMU choisi
int* voisinage(int rayon, int bmu, grille neural_grid)
{
int i_bmu, y_bmu;
for(int i = 0; i < neural_grid.nb_line; i++)
{
for(int y = 0; y < neural_grid.nb_column; y++, bmu--)
if(bmu == 0)
{
//neural_grid._rect[i][y] = -5;
i_bmu = i;
y_bmu = y;
}
}
int c = 0;
int d = 0;
if (rayon%2 == 0)
rayon+=1;
//printf("\nici2 rayon:%d nb_voisin_max:%lf \n", rayon, pow(rayon*2+1, 2));
int *_v = malloc(sizeof(int)*pow(rayon*2+1,2));
int vi = 0;
//printf("\nrayon: %d bmu_i : %d bmu_y : %d", rayon, i_bmu, y_bmu);
while(c != rayon+1)
{
while(d != rayon+1)
{
if(i_bmu+c < neural_grid.nb_line && y_bmu+d < neural_grid.nb_column && neural_grid._rect[i_bmu+c][y_bmu+d] != -4)
{
_v[vi] = neural_grid._rect[i_bmu+c][y_bmu+d];
neural_grid._rect[i_bmu+c][y_bmu+d] = -4;
vi++;
}
if(i_bmu-c >= 0 && y_bmu-d >= 0 && neural_grid._rect[i_bmu-c][y_bmu-d] != -4)
{
_v[vi] = neural_grid._rect[i_bmu-c][y_bmu-d];
neural_grid._rect[i_bmu-c][y_bmu-d] = -4;
vi++;
}
if(i_bmu+c < neural_grid.nb_line && y_bmu-d >= 0 && neural_grid._rect[i_bmu+c][y_bmu-d] != -4)
{
_v[vi] = neural_grid._rect[i_bmu+c][y_bmu-d];
neural_grid._rect[i_bmu+c][y_bmu-d] = -4;
vi++;
}
if(i_bmu-c >= 0 && y_bmu+d < neural_grid.nb_column && neural_grid._rect[i_bmu-c][y_bmu+d] != -4)
{
_v[vi] = neural_grid._rect[i_bmu-c][y_bmu+d];
neural_grid._rect[i_bmu-c][y_bmu+d] = -4;
vi++;
}
d++;
}
d = 0;
c++;
}
neural_grid.nb_voisin[0] = vi;
return _v;
}
//DEBUT APPRENTISSAGE
void apprendre(neural_m** neural_map, data_v* data, double alpha, int* voisins, size_t nb_voisin)
{
int i = 0, y = 0;
while(i < nb_voisin)
{
y = 0;
while(y < 4)
{
neural_map[voisins[i]]->mem[y] += alpha * (data->vec[y] - neural_map[voisins[i]]->mem[y]);//ICI revoir la formule
y++;
}
i++;
}
}
//Retourne les meilleurs neurones
BMU* getBMU(neural_m** neural_map, data_v* one_data, int nb_neurones)
{
double min = RAND_MAX;
//ici on fais la distance eulidienne et calcul de la + petite distance
for(int i=0; i < nb_neurones; i++)
{
neural_map[i]->act = euclidean_distance(neural_map[i]->mem, one_data->vec);
//printf("%d: %lf\n", i, neural_map[i]->act);
if(neural_map[i]->act < min)
min = neural_map[i]->act;
}
BMU* bmu = malloc(sizeof(BMU));
bmu->best_indice = malloc(sizeof(int)*nb_neurones);
bmu->nb_bmu = 0;
//printf("\nmeilleur_distance: %lf", min);
int y= 0;
//Attribution DES meilleurs neurones
for(int i=0; i < nb_neurones; i++)
{
if(neural_map[i]->act == min)
{
bmu->best_indice[y] = i;
//printf("\nnouveau membre de la liste : %d\n", bmu->best_indice[y]);
y++;
bmu->nb_bmu++;
}
}
return bmu;
}
void readll(BMU* bmu_list)
{
for(int i = 0;i < bmu_list->nb_bmu; i++)
{
printf("\nBMU n°%d : %d\n", i, bmu_list->best_indice[i]);
}
}