Skip to content

Latest commit

 

History

History
69 lines (50 loc) · 1.82 KB

README.md

File metadata and controls

69 lines (50 loc) · 1.82 KB

DQN

使用PyTorch實作DQN演算法,並訓練super-mario-bros以及atari-pong,整體架構參考openai/baselines。

Warning:訓練DQN請開足夠的記憶體,Replay Buffer以預設值1000000為例至少會使用約8G的記憶體。  

Dependencies

  • Python 3.6
  • Anaconda
  • PyTorch
  • gym
  • gym[atari]
  • ppaquette_gym_super_mario
  • fceux

Getting Started

以下以Ubuntu 16.04 LTS環境為準,安裝Anaconda時請一路Enter與Yes到底。

wget https://repo.continuum.io/archive/Anaconda3-4.4.0-Linux-x86_64.sh
bash Anaconda3-4.4.0-Linux-x86_64.sh
source .bashrc
conda install pytorch torchvision -c soumith
conda install libgcc
pip install gym[Atari]
sudo apt-get update
sudo apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig
sudo apt-get install fceux
pip install git+https://github.com/ppaquette/gym-super-mario/

How to run

  • super-mario-bros
xvfb-run -s "-screen 0 1400x900x24" python train_mario.py
  • atari-pong
python train_pong.py

Result

  • Super-Mario-Bros

使用8顆cpu在GCP上跑16個小時,RAM開24G非常足夠,但很難收斂,無法穩定過關。
訓練的影像預設位置在/video/mario/。

  • Atari-Pong

使用1張GPU(Nvidia Tesla K80)加4顆cpu在GCP上跑8個小時,能夠穩定大幅贏電腦。
訓練的影像預設位置在/video/gym-reslults/。

References

Playing Atari with Deep Reinforcement Learning
openai/baselines
transedward/pytorch-dqn
openai/gym
ppaquette/gym-super-mario