-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcritic.py
94 lines (75 loc) · 3.01 KB
/
critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import numpy as np
class CriticNetwork(torch.nn.Module):
def __init__(
self,
input_shape,
n_actions,
h1_size=400,
h2_size=300,
lr=1e-3,
decay=1e-2,
chkpt_path="weights/critic.pt",
):
super(CriticNetwork, self).__init__()
self.input_shape = input_shape
self.n_actions = n_actions.shape[0]
self.h1_size = h1_size
self.h2_size = h2_size
self.lr = lr
self.decay = decay
self.chkpt_path = chkpt_path
self.h1_layer = torch.nn.Linear(*self.input_shape, self.h1_size)
self.h2_layer = torch.nn.Linear(self.h1_size, self.h2_size)
# use layer norm b/c it isn't affected by batch size
# batch norm also fails to copy running avg to target networks
self.ln1 = torch.nn.LayerNorm(self.h1_size)
self.ln2 = torch.nn.LayerNorm(self.h2_size)
# from paper - action vals aren't input until after 2nd hidden layer
self.action_vals = torch.nn.Linear(self.n_actions, self.h2_size)
self.out_layer = torch.nn.Linear(self.h2_size, 1)
self.init_weights()
self.optimizer = torch.optim.Adam(
self.parameters(), lr=self.lr, weight_decay=self.decay
)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.to(self.device)
def init_weights(self):
f1 = 1.0 / np.sqrt(self.h1_layer.weight.data.size()[0])
self.h1_layer.weight.data.uniform_(-f1, f1)
self.h1_layer.bias.data.uniform_(-f1, f1)
f2 = 1.0 / np.sqrt(self.h2_layer.weight.data.size()[0])
self.h2_layer.weight.data.uniform_(-f2, f2)
self.h2_layer.bias.data.uniform_(-f2, f2)
fact = 1.0 / np.sqrt(self.action_vals.weight.data.size()[0])
self.action_vals.weight.data.uniform_(-fact, fact)
self.action_vals.bias.data.uniform_(-fact, fact)
fout = 3e-3
self.out_layer.weight.data.uniform_(-fout, fout)
self.out_layer.bias.data.uniform_(-fout, fout)
def forward(self, state, action):
state = self.h1_layer(state)
state = torch.nn.functional.relu(self.ln1(state))
state = self.h2_layer(state)
state = self.ln2(state)
action = self.action_vals(action)
# add state and action prior to ReLu activation
q = torch.nn.functional.relu(torch.add(state, action))
return self.out_layer(q)
def save_checkpoint(self, epoch, loss):
torch.save(
{
"epoch": epoch,
"model_state_dict": self.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
"loss": loss,
},
self.chkpt_path,
)
def load_checkpoint(self):
chkpt = torch.load(self.chkpt_path)
self.load_state_dict(chkpt["model_state_dict"])
self.optimizer.load_state_dict(chkpt["optimizer_state_dict"])
epoch = chkpt["epoch"]
loss = chkpt["loss"]
return epoch, loss