-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
138 lines (112 loc) · 3.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gymnasium as gym
import numpy as np
from agent import DDPGAgent
from utils import plot_running_avg, save_animation
import pandas as pd
import warnings
from argparse import ArgumentParser
import os
import torch
warnings.filterwarnings("ignore", category=DeprecationWarning)
environments = [
"BipedalWalker-v3",
"Pendulum-v1",
"MountainCarContinuous-v0",
"Ant-v4",
"HalfCheetah-v4",
"Hopper-v4",
"Humanoid-v4",
"LunarLanderContinuous-v2",
"HumanoidStandup-v4",
"InvertedDoublePendulum-v4",
"InvertedPendulum-v4",
"Pusher-v4",
"Reacher-v4",
"Swimmer-v3",
"Walker2d-v4",
]
def run_ddpg(env_name, n_games=1000, seed=None):
env = gym.make(env_name, render_mode="rgb_array")
if seed is not None:
np.random.seed(seed)
torch.manual_seed(seed)
agent = DDPGAgent(
env_name, env.observation_space.shape, env.action_space, tau=0.001
)
best_score = env.reward_range[0]
history = []
metrics = []
for i in range(n_games):
state, _ = env.reset(seed=seed)
agent.action_noise.reset()
term, trunc, score = False, False, 0
while not term and not trunc:
action = agent.choose_action(state)
next_state, reward, term, trunc, _ = env.step(action)
agent.store_transition(state, action, reward, next_state, term or trunc)
agent.learn()
score += reward
state = next_state
history.append(score)
avg_score = np.mean(history[-100:])
if avg_score > best_score:
best_score = avg_score
agent.save_checkpoints(i + 1, score)
metrics.append(
{
"episode": i + 1,
"score": score,
"average_score": avg_score,
"best_score": best_score,
}
)
print(
f"[{env_name} Episode {i + 1:04}/{n_games}] Score = {score:7.4f} Average = {avg_score:7.4f}",
end="\r",
)
return history, metrics, best_score, agent
def save_best_version(env_name, agent, seeds=10):
agent.load_checkpoints()
best_total_reward = float("-inf")
best_frames = None
for _ in range(seeds):
env = gym.make(env_name, render_mode="rgb_array")
frames = []
total_reward = 0
state, _ = env.reset()
term, trunc = False, False
while not term and not trunc:
frames.append(env.render())
action = agent.choose_action(state)
next_state, reward, term, trunc, _ = env.step(action)
state = next_state
total_reward += reward
if total_reward > best_total_reward:
best_total_reward = total_reward
best_frames = frames
save_animation(best_frames, f"environments/{env_name}.gif")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"-e", "--env", default=None, help="Environment name from Gymnasium"
)
parser.add_argument(
"-n", "--n_games", default=1000, type=int, help="Number of episodes (games) to run during training"
)
args = parser.parse_args()
for fname in ["metrics", "environments", "weights"]:
if not os.path.exists(fname):
os.makedirs(fname)
if args.env:
history, metrics, best_score, trained_agent = run_ddpg(args.env, args.n_games)
plot_running_avg(history, args.env)
df = pd.DataFrame(metrics)
df.to_csv(f"metrics/{args.env}_metrics.csv", index=False)
save_best_version(args.env, trained_agent)
else:
for env_name in environments:
history, metrics, best_score, trained_agent = run_ddpg(env_name, args.n_games)
plot_running_avg(history, env_name)
df = pd.DataFrame(metrics)
df.to_csv(f"metrics/{env_name}_metrics.csv", index=False)
save_best_version(env_name, trained_agent)