-
Notifications
You must be signed in to change notification settings - Fork 40
/
main.py
316 lines (266 loc) · 12.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# ------------------------------------------------------------------------
# DETR
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Additionally modified by NAVER Corp. for ViDT
# ------------------------------------------------------------------------
import os
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import resource
import datasets
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from engine import evaluate, train_one_epoch, train_one_epoch_with_teacher
from methods import build_model
from util.scheduler import create_scheduler
from arguments import get_args_parser
import argparse
def build_distil_model(args):
""" build a teacher model """
assert args.distil_model in ['vidt_nano', 'vidt_tiny', 'vidt_small', 'vidt_base']
return build_model(args, is_teacher=True)
def main(args):
""" main function to train a ViDT model """
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1]))
# Gradient accumulation setup
if args.n_iter_to_acc > 1:
if args.batch_size % args.n_iter_to_acc != 0:
print("Not supported divisor for acc grade.")
import sys
sys.exit(1)
print("Gradient Accumulation is applied.")
print("The batch: ", args.batch_size, "->", int(args.batch_size / args.n_iter_to_acc),
'but updated every ', args.n_iter_to_acc, 'steps.')
args.batch_size = args.batch_size // args.n_iter_to_acc
##
# distributed data parallel setup
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# import pdb;pdb.set_trace()
model, criterion, postprocessors = build_model(args)
model.to(device)
# if distil_mode is specified, load a teacher model fron a url or local path
teacher_model = None
if args.distil_model is not None:
print("Distillation On -- Model:", args.distil_model, "Path:", args.distil_model_path)
teacher_model = build_distil_model(args)
if 'http' in args.distil_model_path or 'https' in args.distil_model_path:
# load from a url
torch.hub._download_url_to_file(
url=args.distil_model_path,
dst="checkpoint.pth"
)
checkpoint = torch.load("checkpoint.pth", map_location="cpu")
teacher_model.load_state_dict(checkpoint["model"])
else:
# load from a local path
teacher_dict = torch.load(args.distil_model_path)['model']
teacher_model.load_state_dict(teacher_dict)
teacher_model.to(device)
print('complete to load the teacher model from', args.distil_model_path)
# parallel model setup
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[args.gpu],
find_unused_parameters=True)
model_without_ddp = model.module
if teacher_model is not None:
teacher_model = torch.nn.parallel.DistributedDataParallel(teacher_model,
device_ids=[args.gpu],
find_unused_parameters=True)
# print parameter info.
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
if teacher_model is not None:
n_parameters = sum(p.numel() for p in teacher_model.parameters() if p.requires_grad)
print('number of params for teacher:', n_parameters)
# optimizer setup
def build_optimizer(model, args):
if hasattr(model.backbone, 'no_weight_decay'):
skip = model.backbone.no_weight_decay()
head = []
backbone_decay = []
backbone_no_decay = []
for name, param in model.named_parameters():
if "backbone" not in name and param.requires_grad:
head.append(param)
if "backbone" in name and param.requires_grad:
if len(param.shape) == 1 or name.endswith(".bias") or name.split('.')[-1] in skip:
backbone_no_decay.append(param)
else:
backbone_decay.append(param)
param_dicts = [
{"params": head},
{"params": backbone_no_decay, "weight_decay": 0., "lr": args.lr},
{"params": backbone_decay, "lr": args.lr},
]
# print the total number of trainable params.
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('num of total trainable prams:' + str(n_parameters))
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
return optimizer
# build an optiimzer along with a learning scheduler
optimizer = build_optimizer(model_without_ddp, args)
lr_scheduler, _ = create_scheduler(args, optimizer)
# build data loader
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
print("# train:", len(dataset_train), ", # val", len(dataset_val))
# data samplers
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
if args.dataset_file == "coco_panoptic":
# We also evaluate AP during panoptic training, on original coco DS
coco_val = datasets.coco.build("val", args)
base_ds = get_coco_api_from_dataset(coco_val)
else:
base_ds = get_coco_api_from_dataset(dataset_val)
output_dir = Path(args.output_dir)
# resume from a checkpoint or eval with a checkpoint
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'], strict=False)
print('load a checkpoint from', args.resume)
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
# only evaluation purpose
if args.eval:
test_stats, coco_evaluator = evaluate(model, criterion, postprocessors,
data_loader_val, base_ds, device)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
# specify the current epoch number for samplers
if args.distributed:
sampler_train.set_epoch(epoch)
if teacher_model is None:
# training one epoch with distillation with token matching
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm, n_iter_to_acc=args.n_iter_to_acc, print_freq=args.print_freq)
else:
# training one epoch with default setting
train_stats = train_one_epoch_with_teacher(
model, teacher_model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm, n_iter_to_acc=args.n_iter_to_acc, print_freq=args.print_freq)
lr_scheduler.step(epoch)
# model save
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
# evaluation on COCO val.
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device)
# logs
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('ViDT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
''' for testing
args.method = 'vidt'
args.backbone_name = 'swin_nano'
args.batch_size = 4
args.num_workers = 4
args.aux_loss = True
args.with_box_refine = True
args.output_dir = 'testing'
args.coco_path = '/mnt/ddn/datasets/COCO2017_Seg/train'
# seg
args.epff = True
args.token_label = False #True
args.iou_aware = False #True
args.with_vector = False #True
args.masks = False #True
args.vector_hidden_dim = 256 #1024
args.vector_loss_coef = 3.0
args.det_token_num = 300
args.resume = '/mnt/backbone-nfs/hwanjun/pami2022/optimized_checkpoints/vidt_plus_swin_nano_optimized.pth'
args.eval = True
'''
# set dim_feedforward differently
# standard Transformers use 2048, while Deformable Transformers use 1024
if args.method == 'vidt_wo_neck':
args.dim_feedforward = 2048
else:
args.dim_feedforward = 1024
# log file name
if args.output_dir == '':
# default out_dir name if not specified
args.output_dir += args.method + '-'
args.output_dir += args.backbone_name + '-'
args.output_dir += args.sched + '-'
args.output_dir += str(args.epochs) + '-'
args.output_dir += str(args.batch_size)
args.output_dir = args.method + '-' + args.backbone_name.upper() + '-batch-' + \
str(args.batch_size) + '-epoch-' + str(args.epochs)
# make log directories
if args.output_dir:
log_main = 'logs'
args.output_dir = os.path.join(log_main, args.output_dir)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
print('log', args.output_dir)
main(args)