-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlosses.py
42 lines (33 loc) · 1.8 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import torch.nn as nn
import numpy as np
def simple_contrstive_loss(vi_batch, vi_t_batch, mn_arr, temp_parameter=0.1):
"""
Returns the probability that feature representation for image I and I_t belong to same distribution.
:param vi_batch: Feature representation for batch of images I
:param vi_t_batch: Feature representation for batch containing transformed versions of I.
:param mn_arr: Memory bank of feature representations for negative images for current batch
:param temp_parameter: The temperature parameter
"""
# Define constant eps to ensure training is not impacted if norm of any image rep is zero
eps = 1e-6
# L2 normalize vi, vi_t and memory bank representations
vi_norm_arr = torch.norm(vi_batch, dim=1, keepdim=True)
vi_t_norm_arr = torch.norm(vi_t_batch, dim=1, keepdim=True)
mn_norm_arr = torch.norm(mn_arr, dim=1, keepdim=True)
vi_batch = vi_batch / (vi_norm_arr + eps)
vi_t_batch = vi_t_batch/ (vi_t_norm_arr + eps)
mn_arr = mn_arr / (mn_norm_arr + eps)
# Find cosine similarities
sim_vi_vi_t_arr = (vi_batch @ vi_t_batch.t()).diagonal()
sim_vi_t_mn_mat = (vi_t_batch @ mn_arr.t())
# Fine exponentiation of similarity arrays
exp_sim_vi_vi_t_arr = torch.exp(sim_vi_vi_t_arr / temp_parameter)
exp_sim_vi_t_mn_mat = torch.exp(sim_vi_t_mn_mat / temp_parameter)
# Sum exponential similarities of I_t with different images from memory bank of negatives
sum_exp_sim_vi_t_mn_arr = torch.sum(exp_sim_vi_t_mn_mat, 1)
# Find batch probabilities arr
batch_prob_arr = exp_sim_vi_vi_t_arr / (exp_sim_vi_vi_t_arr + sum_exp_sim_vi_t_mn_arr + eps)
neg_log_img_pair_probs = -1 * torch.log(batch_prob_arr)
loss_i_i_t = torch.sum(neg_log_img_pair_probs) / neg_log_img_pair_probs.size()[0]
return loss_i_i_t